Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Environ Radioact ; 250: 106905, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35598406

ABSTRACT

Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers.

2.
J Environ Radioact ; 237: 106698, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34304113

ABSTRACT

Gas samples taken from two historic underground nuclear tests done in 1989 at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), were examined to determine how xenon isotopes fractionate because of early-time cavity processes, transport through the rock, or dispersal through tunnels. Xenon isotopes are currently being used to distinguish civilian sources of xenon in the atmosphere from sources associated with underground nuclear explosions (UNEs). The two nuclear tests included (1) BARNWELL, a test conducted in a vertical shaft approximately 600 m below ground surface at Pahute Mesa, and (2) DISKO ELM, a horizontal line-of-sight test done in P-tunnel approximately 261 m below the surface of Aqueduct Mesa. Numerical flow and transport models developed for the two sites had mixed success when attempting to match the observed xenon isotope ratios. At the BARNWELL site, the simulated xenon isotope ratios were consistent with measurements from the chimney and ground surface, and appeared to have been affected primarily by fractionation during subsurface transport. At the DISKO ELM site, samples taken from two elevations in the chimney failed to show the degree of fractionation predicted by the models during transport, and did not show evidence for significant fractionation due to early-time condensation of refractory xenon-precursor radionuclides into the melt glass. Gas samples taken from the adjacent tunnels in the days following the test showed mixed evidence for early-time separation of xenon isotopes from their iodine precursors.


Subject(s)
Air Pollutants, Radioactive , Radiation Monitoring , Air Pollutants, Radioactive/analysis , Atmosphere , Explosions , Radioisotopes , Xenon Radioisotopes/analysis
3.
J Environ Radioact ; 222: 106297, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32739734

ABSTRACT

An underground nuclear explosion (UNE) generates radioactive gases that can be transported through fractures to the ground surface over timescales of hours to months. If detected, the presence of particular short-lived radionuclides in the gas can provide strong evidence that a recent UNE has occurred. By drawing comparisons between sixteen similar historical U.S. UNEs where radioactive gas was or was not detected, we identified factors that control the occurrence and timing of breakthrough at the ground surface. The factors that we evaluated include the post-test atmospheric conditions, local geology, and surface geology at the UNE sites. The UNEs, all located on Pahute Mesa on the Nevada National Security Site (NNSS), had the same announced yield range (20-150 kt), similar burial depths in the unsaturated zone, and were designed and performed by the same organization during the mid-to-late 1980s. Results of the analysis indicate that breakthrough at the ground surface is largely controlled by a combination of the post-UNE barometric pressure changes in the months following the UNE, and the volume of air-filled pore space above the UNE. Conceptually simplified numerical models of each of the 16 historical UNEs that include these factors successfully predict the occurrence (5 of the UNEs) or lack of occurrence (remaining 11 UNEs) of post-UNE gas seepage to the ground surface. However, the data analysis and modeling indicates that estimates of the meteorological conditions and of the post-UNE, site-specific subsurface environment including air-filled porosity, in combination, may be necessary to successfully predict late-time detectable gas breakthrough for a suspected UNE site.


Subject(s)
Radiation Monitoring , Radioactive Pollutants , Environmental Monitoring , Gases , Geology , Nevada , Radioisotopes
4.
Sci Rep ; 9(1): 9537, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31267037

ABSTRACT

We demonstrate that although barometric pressures are complicated signals comprised of numerous frequencies, it is a subset of these frequencies that drive the overwhelming majority of gas transport in fractured rock. Using an inverse numerical analysis, we demonstrate that a single barometric component with seasonally modulated amplitude approximates gas transport due to a measured barometric signal. If past barometric tendencies are expected to continue at a location, the identification of this frequency can facilitate accurate long term predictions of barometrically induced gas transport negating the need to consider stochastic realizations of future barometric variations. Additionally, we perform an analytical analysis that indicates that there is a set of barometric frequencies, consistent with the inverse numerical analysis, with high production efficiency. Based on the corroborating inverse numerical and analytical analyses, we conclude that there is a set of dominant gas transport frequencies in barometric records.

5.
Sci Rep ; 5: 18383, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26676058

ABSTRACT

Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

6.
Environ Sci Technol ; 49(11): 6783-90, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25965632

ABSTRACT

Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.


Subject(s)
Desiccation , Hot Temperature , Minerals/analysis , Radioactive Waste/analysis , Sodium Chloride/chemistry , Water/chemistry , Computer Simulation , Models, Theoretical , Molecular Weight , Numerical Analysis, Computer-Assisted , Porosity , Refuse Disposal
7.
Environ Sci Technol ; 48(7): 3908-15, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24625081

ABSTRACT

This study develops a probability framework to evaluate subsurface risks associated with commercial-scale carbon sequestration in the Kevin Dome, Montana. Limited knowledge of the spatial distribution of physical attributes of the storage reservoir and the confining rocks in the area requires using regional data to estimate project risks during the pre-site characterization analysis. A set of integrated Monte Carlo simulations are used to assess four risk proxies: the CO2 injectivity, area of review (AoR), migration rate into confining rocks, and a monitoring strategy prior to detailed site characterization. Results show a reasonable likelihood of reaching the project goal of injecting 1 Mt in 4 years with a single injection well (>58%), increasing to >70% if the project is allowed to run for 5 years. The mean radius of the AoR, based on a 0.1 MPa pressure change, is around 4.8 km. No leakage of CO2 through the confining units is seen in any simulations. The computed CO2 detection probability suggests that the monitoring wells should be located at less than 1.2 km away from the injection well so that CO2 is likely to be detected within the time frame of the project. The scientific results of this study will be used to inform the detailed site characterization process and to provide more insight for understanding operational and technical risks before injecting CO2.


Subject(s)
Carbon Sequestration , Risk Assessment , Carbon Dioxide/analysis , Computer Simulation , Confidence Intervals , Montana , Monte Carlo Method , Porosity , Uncertainty
8.
Chemosphere ; 91(3): 248-57, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23260249

ABSTRACT

Aquifer heterogeneity controls spatial and temporal variability of reactive transport parameters and has significant impacts on subsurface modeling of flow, transport, and remediation. Upscaling (or homogenization) is a process to replace a heterogeneous domain with a homogeneous one such that both reproduce the same response. To make reliable and accurate predictions of reactive transport for contaminant in chemically and physically heterogeneous porous media, subsurface reactive transport modeling needs upscaled parameters such as effective retardation factor to perform field-scale simulations. This paper develops a conceptual model of multimodal reactive mineral facies for upscaling reactive transport parameters of hierarchical heterogeneous porous media. Based on the conceptual model, covariance of hydraulic conductivity, sorption coefficient, flow velocity, retardation factor, and cross-covariance between flow velocity and retardation factor are derived from geostatistical characterizations of a three-dimensional unbounded aquifer system. Subsequently, using a Lagrangian approach the scale-dependent analytical expressions are derived to describe the scaling effect of effective retardation factors in temporal and spatial domains. When time and space scales become sufficiently large, the effective retardation factors approximate their composite arithmetic mean. Correlation between the hydraulic conductivity and the sorption coefficient can significantly affect the values of the effective retardation factor in temporal and spatial domains. When the temporal and spatial scales are relatively small, scaling effect of the effective retardation factors is relatively large. This study provides a practical methodology to develop effective transport parameters for field-scale modeling at which remediation and risk assessment is actually conducted. It does not only bridge the gap between bench-scale measurements to field-scale modeling, but also provide new insights into the influence of hierarchical mineral distribution on effective retardation factor.


Subject(s)
Groundwater/chemistry , Minerals/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Monitoring/methods , Porosity , Water Movements
9.
Environ Sci Technol ; 45(20): 8597-604, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21905694

ABSTRACT

Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO2 is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO2 from coal, transporting it large distances through pipelines, and storing it safely underground.


Subject(s)
Air Pollution/prevention & control , Carbon Dioxide , Coal , Environmental Monitoring
10.
Environ Sci Technol ; 45(1): 215-22, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20698546

ABSTRACT

We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.


Subject(s)
Carbon Dioxide , Carbon Sequestration , Environmental Monitoring/methods , Colorado , Decision Support Techniques , Environmental Restoration and Remediation , Geological Phenomena , Models, Chemical , Utah
11.
Environ Sci Technol ; 43(3): 565-70, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19244984

ABSTRACT

In this paperwe describe CO2-PENS, a comprehensive system-level computational model for performance assessment of geologic sequestration of CO2. CO2-PENS is designed to perform probabilistic simulations of CO2 capture, transport, and injection in different geologic reservoirs. Additionally, the long-term fate of CO2 injected in geologic formations, including possible migration out of the target reservoir, is simulated. The simulations sample from probability distributions for each uncertain parameter, leading to estimates of global uncertainty that accumulate through coupling of processes as the simulation time advances. Each underlying process in the system-level model is built as a module that can be modified as the simulation tool evolves toward more complex problems. This approach is essential in coupling processes that are governed by different sets of equations operating at different time-scales. We first explain the basic formulation of the system level model, briefly discuss the suite of process-level modules that are linked to the system level, and finally give an in-depth example that describes the system level coupling between an injection module and an economic module. The example shows how physics-based calculations of the number of wells required to inject a given amount of CO2 and estimates of plume size can impact long-term sequestration costs.


Subject(s)
Carbon Dioxide , Geology , Models, Theoretical
12.
Environ Sci Technol ; 42(19): 7280-6, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18939559

ABSTRACT

Sequestration of CO2 in geologic reservoirs is one of the promising technologies currently being explored to mitigate anthropogenic CO2 emissions. Large-scale deployment of geologic sequestration will require seals with a cumulative area amounting to hundreds of square kilometers per year and will require a large number of sequestration sites. We are developing a system-level model, CO2-PENS, that will predict the overall performance of sequestration systems while taking into account various processes associated with different parts of a sequestration operation, from the power plant to sequestration reservoirs to the accessible environment. The adaptability of CO2-PENS promotes application to a wide variety of sites, and its level of complexity can be increased as detailed site information becomes available. The model CO2-PENS utilizes a science-based-prediction approach by integrating information from process-level laboratory experiments, field experiments/observations, and process-level numerical modeling. The use of coupled process models in the system model of CO2-PENS provides insights into the emergent behavior of aggregate processes that could not be obtained by using individual process models. We illustrate the utility of the concept by incorporating geologic and wellbore data into a synthetic, depleted oil reservoir. In this sequestration scenario, we assess the fate of CO2 via wellbore release and resulting impacts of CO2 to a shallow aquifer and release to the atmosphere.


Subject(s)
Carbon Dioxide/chemistry , Models, Chemical , Soil , Water Supply , Atmosphere
13.
Ground Water ; 44(2): 125-8, 2006.
Article in English | MEDLINE | ID: mdl-16556188
SELECTION OF CITATIONS
SEARCH DETAIL
...