Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 322(2): C177-C184, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34910601

ABSTRACT

Over the years, numerous studies demonstrated reciprocal communications between processes of bone marrow hematopoiesis and bone remodeling. Megakaryocytes, rare bone marrow cells responsible for platelet production, were demonstrated to be involved in bone homeostasis. Myelofibrosis, characterized by an increase in pleomorphic megakaryocytes in the bone marrow, commonly leads to the development of osteosclerosis. In vivo, an increase in megakaryocyte number was shown to result in osteosclerosis in GATA-1low, Nf-e2-/-, TPOhigh, Mplf/f;PF4cre, Lnk-/-, Mpig6b-/-, Mpig6bfl/fl;Gp1ba-Cr+/KI, and Pt-vWD mouse models. In vitro, megakaryocytes stimulate osteoblast proliferation and have variable effects on osteoclast proliferation and activity through soluble factors and direct cell-cell communications. Intriguingly, new studies revealed that the ability of megakaryocytes to communicate with bone cells is affected by the age and sex of animals. This mini-review summarizes changes seen in bone architecture and bone cell function in mouse models with an elevated number of megakaryocytes and the effects megakaryocytes have on osteoblasts and osteoclasts in vitro, and discusses potential molecular players that can mediate these effects.


Subject(s)
Cell Communication/physiology , Disease Models, Animal , Megakaryocytes/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Primary Myelofibrosis/metabolism , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Humans , Megakaryocytes/pathology , Mice , Mice, Knockout , Osteoblasts/pathology , Osteoclasts/pathology , Primary Myelofibrosis/pathology
2.
Physiol Rep ; 9(3): e14745, 2021 02.
Article in English | MEDLINE | ID: mdl-33587325

ABSTRACT

Hematopoietic disorders, particularly hemolytic anemias, commonly lead to bone loss. We have previously reported that actively proliferating cancer cells stimulate osteoclastogenesis from late precursors in a RANKL-independent manner. We theorized that cancer cells exploit the physiological role of bone resorption to support expanding hematopoietic bone marrow and examined if hematopoietic cells can trigger osteoclastogenesis. Using phlebotomy-induced acute anemia in mice, we found strong correlation between augmented erythropoiesis and increased osteoclastogenesis. Conditioned medium (CM) from K562 erythroleukemia cells and primary mouse erythroblasts stimulated osteoclastogenesis when added to RANKL-primed precursors from mouse bone marrow or RAW264.7 cells. Using immunoblotting and mass spectrometry, PRDX2 was identified as a factor produced by erythroid cells in vitro and in vivo. PRDX2 was detected in K562-derived exosomes, and inhibiting exosomal release significantly decreased the osteoclastogenic capacity of K562 CM. Recombinant PRDX2 induced osteoclast formation from RANKL-primed primary or RAW 264.7 precursors to levels comparable to achieved with continuous RANKL treatment. Thus, increased bone marrow erythropoiesis secondary to anemia leads to upregulation of PRDX2, which is released in the exosomes and acts to induce osteoclast formation. Increased bone resorption by the osteoclasts expands bone marrow cavity, which likely plays a supporting role to increase blood cell production.


Subject(s)
Anemia/metabolism , Erythropoiesis , Exosomes/metabolism , Osteoclasts/metabolism , Osteogenesis , Paracrine Communication , Peroxiredoxins/metabolism , Anemia/blood , Anemia/pathology , Animals , Disease Models, Animal , Erythroblasts/metabolism , Female , Humans , K562 Cells , Leukemia, Erythroblastic, Acute/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts/pathology , Peroxiredoxins/blood , RAW 264.7 Cells , Signal Transduction
3.
J Bone Miner Res ; 36(4): 803-813, 2021 04.
Article in English | MEDLINE | ID: mdl-33434328

ABSTRACT

Patients with chronic myelofibrosis often suffer from osteosclerosis, which is associated with bone pain and may lead to bone marrow failure. The pathogenesis of myelofibrosis is linked to aberrant megakaryocyte development and function. Null and loss-of-function mutations in MPIG6B, which codes for the inhibitory heparan sulfate receptor G6b-B, result in severe macrothrombocytopenia, large megakaryocyte clusters, and focal primary myelofibrosis in mice and humans. We investigated the development of osteosclerosis in Mpig6b null (Mpig6b-/- ) mice. Although male and female Mpig6b-/- mice presented with elevated bone marrow megakaryocyte number and macrothrombocytopenia, female Mpig6b-/- mice developed progressive splenomegaly starting at 8 weeks of age. Micro-computed tomography (µCT) of femurs showed that female Mpig6b-/- mice had increased cortical thickness and reduced bone marrow area starting at 8 weeks of age and developed occlusion of the medullary cavity by trabeculae by 16 weeks of age. In contrast, male Mpig6b-/- mice developed only a small number of trabeculae in the medullary cavity at the proximal diaphysis and demonstrated a temporary decrease in bone volume fraction and trabecular thickness at 16 weeks. Ovariectomy of 10-week-old female Mpig6b-/- mice prevented the development of medullary cavity osteosclerosis, whereas orchiectomy of male Mpig6b-/- mice did not exacerbate their disease. Importantly, ovariectomized female Mpig6b-/- mice also demonstrated improvement in spleen weight compared to sham-operated Mpig6b-/- mice, establishing estrogen as a contributing factor to the severity of the megakaryocyte-driven osteosclerosis. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Osteosclerosis , Primary Myelofibrosis , Animals , Bone and Bones , Female , Humans , Male , Megakaryocytes , Mice , Osteosclerosis/diagnostic imaging , Osteosclerosis/genetics , Ovariectomy , Primary Myelofibrosis/diagnostic imaging , Primary Myelofibrosis/genetics , X-Ray Microtomography
4.
NPJ Microgravity ; 6: 13, 2020.
Article in English | MEDLINE | ID: mdl-32411816

ABSTRACT

Bone loss in space travelers is a major challenge for long-duration space exploration. To quantify microgravity-induced bone loss in humans, we performed a meta-analysis of studies systematically identified from searching Medline, Embase, Web of Science, BIOSIS, NASA Technical reports, and HathiTrust, with the last update in November 2019. From 25 articles selected to minimize the overlap between reported populations, we extracted post-flight bone density values for 148 individuals, and in-flight and post-flight biochemical bone marker values for 124 individuals. A percentage difference in bone density relative to pre-flight was positive in the skull, +2.2% [95% confidence interval: +1.1, +3.3]; neutral in the thorax/upper limbs, -0.7% [-1.3, -0.2]; and negative in the lumbar spine/pelvis, -6.2 [-6.7, -5.6], and lower limbs, -5.4% [-6.0, -4.9]. In the lower limb region, the rate of bone loss was -0.8% [-1.1, -0.5] per month. Bone resorption markers increased hyperbolically with a time to half-max of 11 days [9, 13] and plateaued at 113% [108, 117] above pre-flight levels. Bone formation markers remained unchanged during the first 30 days and increased thereafter at 7% [5, 10] per month. Upon landing, resorption markers decreased to pre-flight levels at an exponential rate that was faster after longer flights, while formation markers increased linearly at 84% [39, 129] per month for 3-5 months post-flight. Microgravity-induced bone changes depend on the skeletal-site position relative to the gravitational vector. Post-flight recovery depends on spaceflight duration and is limited to a short post-flight period during which bone formation exceeds resorption.

5.
Life Sci Space Res (Amst) ; 27: 1-5, 2020 Nov.
Article in English | MEDLINE | ID: mdl-34756222

ABSTRACT

Although many space missions have been completed in the last 60 years, space exploration is still technologically and medically challenging. While large-scale medical studies are impossible in space travelers, meta-analysis allows combining data from small crews that participated in space missions over several decades. Our primary objective was to examine space-travelers' sociodemographic characteristics and spaceflight activities, and their changes with time from the first spaceflight. Our secondary objective was to evaluate the publication practices to assess data availability for health-related meta-analytic studies. Based on state-funded space agencies used as primary sources, and third-party websites used as secondary sources, 565 humans (501 males/64 females) have currently completed spaceflight. The average age of space-travelers increased from 34±4 in the 1960s to 45±4 in the 2010s. While the duration of space missions has increased consistently, the number of missions per year varied in correlation with technological events. Using papers identified in the systematic review of bone health in astronauts, we examined the changes in reporting practices with time. The reported sample size varied from 1 to 58 people, in total providing data for 148 individuals. Data confidentiality significantly improved with time; however, the corresponding decrease in the availability of individual parameters did not allow stratification even by age, sex, and mission duration. Thus, space travelers represent a diverse population suitable for comparative studies, however, it is important to develop reporting practices that ensure consistent, transparent, and ethical presentation of outcomes to support meta-analyses that are critical for understanding the scope of spaceflight-induced health issues.


Subject(s)
Astronauts , Space Flight , Female , Humans , Male
6.
J Bone Miner Res ; 32(4): 731-742, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27787922

ABSTRACT

Blood cell production and bone homeostasis are physically interlinked systems that exhibit active cross-talk. We examined how bone health is affected in patients with hematopoietic disorders due to abnormal proliferation of bone marrow cells. The electronic databases Medline, Embase, PubMed, BIOSIS Previews, Web of Science, and Cochrane were searched for studies presenting numerical values for trabecular bone volume or bone mineral density in control and patients with hematopoietic disorders. We identified 5 studies for beta-thalassemia, 6 for sickle cell anemia, 2 for polycythemia vera and essential thrombocythemia, 3 for chronic myelogenous leukemia, 6 for myelofibrosis, 5 for multiple myeloma, and 4 studies each for systemic mastocytosis, lymphocytic leukemia, and hemochromatosis. The effect of the disease state on bone density was significant and negative for beta-thalassemia (r = -2.00; 95% confidence interval [CI] -3.41, -0.58; p < 0.005), sickle cell anemia (-0.91; -1.36, -0.47; p < 0.00005), chronic myelogenous leukemia (-0.55; -0.88, -0.22; p < 0005), mastocytosis (-0.99; -1.16, -0.82; p < 0.00001), lymphoblastic leukemia (-0.69; -0.98, -0.40; p < 0.00001), multiple myeloma (-0.67; -0.99, -0.35; p < 0.00005), and hemochromatosis (-1.15; -1.64, -0.66; p < 0.00001). The changes were negative but not significant for polycythemia vera (-0.16; -0.38, 0.05; p = 0.069) and essential thrombocythemia (-0.33; -0.92, 0.26; p = 0.14). In myelofibrosis, disease state was associated with increased bone density (0.74; 0.12, 1.36; p < 0.05). Bone density change significantly and negatively correlated with the level of ferritin and bone marrow cellularity but not with hemoglobin or erythropoietin. Thus, independent of hematopoietic lineage, abnormal proliferation of bone marrow cells appears to be associated with bone loss. Iron metabolism may independently contribute to bone homeostasis. © 2016 American Society for Bone and Mineral Research.


Subject(s)
Bone Density , Bone Marrow Cells/metabolism , Bone Marrow Diseases/metabolism , Bone Marrow/metabolism , Homeostasis , Bone Marrow/pathology , Bone Marrow Cells/pathology , Bone Marrow Diseases/pathology , Cell Proliferation , Female , Ferritins/metabolism , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...