Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 214: 120854, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32278411

ABSTRACT

An optical immunosensor based on White Light Reflectance Spectroscopy is described for the determination of the herbicide glyphosate in drinking water samples. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. Glyphosate determination is accomplished by functionalizing the chip with a protein conjugate of the herbicide followed by a competitive immunoassay format. Prior to the assay, glyphosate derivatization in the calibrators and/or the samples was performed through reaction with succinic anhydride. Under the optimized assay protocol, a detection limit of 10 pg mL-1 was achieved. Recovery values ranging from 90.0 to 110% were determined in spiked bottled and tap water samples, demonstrating the accuracy of the method. In addition, the sensor could be regenerated and re-used for at least 14 times without statistically significant effect on the assay sensitivity and accuracy. The excellent analytical performance and short analysis time (approx. 25 min), combined with the small sensor size, should be helpful for the fast on-site determination of glyphosate in drinking water samples.

2.
J Hazard Mater ; 359: 67-75, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30014916

ABSTRACT

An optical immunosensor based on White Light Reflectance Spectroscopy for the simultaneous determination of the herbicides atrazine and paraquat in drinking water samples is demonstrated. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum due to reaction to effective biomolecular layer thickness. Dual-analyte determination is accomplished by functionalizing spatially distinct areas of the chip with protein conjugates of the two herbicides and scanning the surface with an optical reflection probe. A competitive immunoassay format was adopted, followed by reaction with secondary antibodies for signal enhancement. The sensor was highly sensitive with detection limits of 40 and 50 pg/mL for paraquat and atrazine, respectively, and the assay duration was 12 min. Recovery values ranging from 90.0 to 110% were determined for the two pesticides in spiked bottled and tap water samples, demonstrating the sensor accuracy. In addition, the sensor could be regenerated and re-used at least 20 times without significant effect on the assay characteristics. Its excellent analytical performance and short analysis time combined with the small sensor size should be helpful for fast on-site determinations of these analytes.


Subject(s)
Atrazine/analysis , Biosensing Techniques , Herbicides/analysis , Paraquat/analysis , Water Pollutants, Chemical/analysis , Antibodies/immunology , Atrazine/immunology , Herbicides/immunology , Immunoassay , Light , Paraquat/immunology , Serum Albumin, Bovine/immunology , Spectrum Analysis/methods , Water Pollutants, Chemical/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...