Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1678: 463340, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35905682

ABSTRACT

The experimental design methodology based on central composite design of experiments was applied to compare the retention mechanisms in supercritical fluid chromatography (SFC) and non-aqueous hydrophilic interaction liquid chromatography (NA-HILIC). The selected set consists of 26 compounds that belong to imidazoline and serotonin receptor ligands. The different chemometric tools (multiple linear regression, principal component analysis, parallel factor analysis) were used to examine the retention, as well as to identify the most significant retention mechanisms. The retention mechanism was investigated on two different stationary phases (diol, and mixed-mode diol). In NA-HILIC, the mobile phase contains acetonitrile as a main component, and methanolic solution of ammonium formate (+ 0.1% of formic acid) as a modifier. The same mobile phase modifier was used in SFC, with a difference in the main component of the mobile phase which was CO2. The retention behaviour differs significantly between HILIC and SFC conditions. The retention pattern in HILIC mode was more partition-like, while in SFC the solute-sorbent interactions allowed retention. The retention mechanism between mixed-mode diol and the diol phases varies depending on the applied chromatographic mode, e.g., in HILIC the type of stationary phase significantly affects the elution order, while in SFC this was not the case. The HILIC retention behaviour was influenced by the number of tertiary amines-aliphatic, and N atom-centred fragments in tested compounds. On the other hand, the number of pyrrole and pyridine rings in the structure of the compound showed correlation with their SFC retention, simultaneously increasing the molecular weight and rapid elution of larger compounds. It was found that temperature surprisingly plays a major role in SFC mode. The increase in temperature reduces the relative contribution of enthalpy factors to total retention, so the separation in SFC was more entropy-controlled. For further pharmaceutical research and optimization, the SFC would be considered more beneficial compared to HILIC since it gives good selectivity in separation of chosen impurities.


Subject(s)
Chromatography, Supercritical Fluid , Imidazolines , Alcohols , Chemometrics , Chromatography, Supercritical Fluid/methods , Hydrophobic and Hydrophilic Interactions , Piperazine
2.
Article in English | MEDLINE | ID: mdl-29890407

ABSTRACT

The ultrasound-assisted extraction method for isolation of 17 sugars and sugar alcohols from conifers with a subsequent hydrophilic interaction liquid chromatography-tandem mass spectrometry method for their determination is proposed. The optimization of extraction parameters was carried out using Taguchi - L9 (34) orthogonal array experimental design for the following parameters-a methanol concentration in the extraction solution, an extraction time, a type of plant sample and an extraction temperature. The optimal ultrasound-assisted extraction conditions were-MeOH concentration - 30% (water - 70%), extraction time - 30 min, type of plant sample - II (grinded leaves 2-4 mm long), extraction temperature - 60 °C. Pure water and acetonitrile were used as eluents in gradient elution mode to separate the analytes. Direct determination of multiple sugars and sugar alcohols was carried out using a mass spectrometric detector operated in a multiple reaction monitoring mode, providing detection limits in the range between 0.1 and 20 ng/mL and good analytical characteristics of the method without derivatization. The developed approach was validated by multiple successive extraction method applied to test its performance on a series of 10 samples, i.e. 2 samples per each of 5 genera: Abies, Larix, Picea, Pinus (Pinaceae) and Juniperus (Cupressaceae), widely distributed in the boreal conifer forests of Eurasia. The novel strategy can be used for profiling of sugars and sugar alcohols in a wide range of plant species.


Subject(s)
Sugar Alcohols , Sugars , Tracheophyta/chemistry , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Linear Models , Reproducibility of Results , Sonication , Sugar Alcohols/analysis , Sugar Alcohols/chemistry , Sugar Alcohols/isolation & purification , Sugars/analysis , Sugars/chemistry , Sugars/isolation & purification
3.
J Chromatogr A ; 1442: 19-25, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26965649

ABSTRACT

Once exposed to the environment organophosphate nerve agents readily degrade by rapid hydrolysis to the corresponding alkyl methylphosphonic acids which do not exist in nature. These alkyl methylphosphonic acids are finally slowly hydrolyzed to methylphosphonic acid. Methylphosphonic acid is the most stable hydrolysis product of organophosphate nerve agents, persisting in environment for a long time. A highly sensitive method of methylphosphonic acid and alkyl methylphosphonic acids detection in dust and ground mixed samples has been developed and validated. The fact that alkyl methylphosphonic acids unlike methylphosphonic acid did not react with p-bromophenacyl bromide under chosen conditions was discovered. This allowed simultaneous chromatographic separation and mass spectrometric detection of derivatized methylphosphonic acid and underivatized alkyl methylphosphonic acids using HILIC-MS/MS method. Very simple sample pretreatment with high recoveries for each analyte was developed. Methylphosphonic acid pre-column derivate and alkyl methylphosphonic acids were detected using tandem mass spectrometry with electrospray ionization after hydrophilic interaction liquid chromatography separation. The developed approach allows achieving ultra-low detection limits: 200 pg mL(-1) for methylphosphonic acid, 70 pg mL(-1) for ethyl methylphosphonic acid, 8 pg mL(-1) for i-propyl methylphosphonic acid, 8 pg mL(-1) for i-butyl methylphosphonic acid, 5 pg mL(-1) for pinacolyl methylphosphonic acid in the extracts of dust and ground mixed samples. This approach was successfully applied to the dust and ground mixed samples from decommissioned plant for the production of chemical weapons.


Subject(s)
Acetophenones/chemistry , Chromatography, Liquid , Environmental Monitoring/methods , Organophosphorus Compounds/analysis , Tandem Mass Spectrometry , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Organophosphonates/analysis , Soman/analogs & derivatives , Soman/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...