Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(11): 18664-18683, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859017

ABSTRACT

The tilted-wave interferometer is a promising technique for the development of a reference measurement system for the highly accurate form measurement of aspheres and freeform surfaces. The technique combines interferometric measurements, acquired with a special setup, and sophisticated mathematical evaluation procedures. To determine the form of the surface under test, a computational model is required that closely mimics the measurement process of the physical measurement instruments. The parameters of the computational model, comprising the surface under test sought, are then tuned by solving an inverse problem. Due to this embedded structure of the real experiment and computational model and the overall complexity, a thorough uncertainty evaluation is challenging. In this work, a Bayesian approach is proposed to tackle the inverse problem, based on a statistical model derived from the computational model of the tilted-wave interferometer. Such a procedure naturally allows for uncertainty quantification to be made. We present an approximate inference scheme to efficiently sample quantities of the posterior using Monte Carlo sampling involving the statistical model. In particular, the methodology derived is applied to the tilted-wave interferometer to obtain an estimate and corresponding uncertainty of the pixel-by-pixel form of the surface under test for two typical surfaces taking into account a number of key influencing factors. A statistical analysis using experimental design is employed to identify main influencing factors and a subsequent analysis confirms the efficacy of the method derived.

2.
Opt Express ; 24(4): 3393-404, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26906998

ABSTRACT

Tilted-wave interferometry is a promising measurement technique for the highly accurate measurement of aspheres and freeform surfaces. However, the interferometric fringe evaluation of the sub-apertures causes unknown patch offsets, which currently prevent this measurement technique from providing absolute measurements. Simple strategies, such as constructing differences of optical path length differences (OPDs) or ignoring the piston parameter, can diminish the accuracy resulting from the absolute form measurement. Additional information is needed instead; in this paper, the required accuracy of such information is explored in virtual experiments. Our simulation study reveals that, when one absolute OPD is known within a range of 500 nm, the accuracy of the final measurement result is significantly enhanced.

3.
Opt Express ; 22(18): 21313-25, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321510

ABSTRACT

Tilted-wave interferometry (TWI) is a novel optical measurement principle for the measurement of aspherical surfaces. For the reconstruction of the wavefront and the surface under test, respectively, perturbation methods are applied, which require the calculation of the Jacobian matrix. For the practical use of the instrument, a fast and exact calculation of the Jacobian matrices is crucial, since this strongly influences the calculation times of the TWI. By applying appropriate approaches in optical perturbation methods we are able to calculate the required Jacobian matrices analytically when the nominal optical path through the system is given. As a result, calculation times for the TWI can be considerably reduced. We finally illustrate the improved TWI procedure and apply methods of optimal design to determine optimal positions of the surface under test. For such applications the fast calculation of the Jacobian matrices is essential.

SELECTION OF CITATIONS
SEARCH DETAIL
...