Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Microsc Microanal ; 30(1): 27-40, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38252594

ABSTRACT

A suite of natural, synthetic, and mixed synthetic-natural woven fabrics, along with nonwoven filtration layers from a surgical mask and an N95 respirator, was examined using visible light microscopy, scanning electron microscopy, and micro-X-ray computed tomography (µXCT) to determine the fiber diameter distribution, fabric thickness, and the volume of solid space of the fabrics. Nonwoven materials exhibit a positively skewed distribution of fiber diameters with a mean value of ≈3 µm, whereas woven fabrics exhibit a normal distribution of diameters with mean values roughly five times larger (>15 µm). The mean thickness of the N95 filtration material is 1093 µm and is greater than that of the woven fabrics that span from 420 to 650 µm. A new procedure for measuring the thickness of flannel fabrics is proposed that accounts for raised fibers. µXCT allowed for a quantitative nondestructive approach to measure fabric porosity as well as the surface area/volume. Cotton flannel showed the largest mean isotropy of any fabric, though fiber order within the weave is poorly represented in the surface electron images. Surface fabric isotropy and surface area/volume ratios are proposed as useful microstructural quantities to consider for future particle filtration modeling efforts of woven materials.

2.
Anal Methods ; 14(5): 581-587, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34994748

ABSTRACT

Improvement of the particle collection efficiency of sampling wipes is desirable for optimizing the performance of many wipe-based chemical analysis techniques used for trace chemical screening applications. In this note, commercially available Teflon coated fiberglass and calendered Nomex sampling wipes were modified by mechanically scoring the wipe surface to produce topography that promoted enhanced and localized particle collection. Wipe surface modifications improved particle collection efficiency, relative to unmodified wipes, by factors of 3 to 13 depending on sampling conditions, wipe type, and surface sampled. Improvements were demonstrated for both model polystyrene latex microspheres and inkjet printed explosive particles. The modifications also concentrated particles into pre-defined locations on the wipe which can be engineered to ensure maximum overlap with the thermal desorber of a trace contraband detection system allowing for more effective analysis of collected trace residues.


Subject(s)
Explosive Agents , Explosive Agents/analysis , Explosive Agents/chemistry , Specimen Handling
3.
ACS Nano ; 15(8): 12860-12868, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34251793

ABSTRACT

The United States Centers for Disease Control and Prevention and World Health Organization recognize that wearing cloth face coverings can slow the transmission of respiratory diseases via source control. Adding a partial layer of material with a high filtration efficiency (FE, e.g., polypropylene sheets that meet the HEPA standard) as an insert can potentially provide additional personal protection; however, data on the necessary areal coverage are sparse. The relationship between insert area ratio (IAR) relative to fabric area, FE, differential pressure (ΔP, a surrogate for breathability), and quality factor (QF, a ratio including FE and ΔP) utilizing two fabrics (rayon and 100% cotton lightweight flannel) and three insert materials (HEPA vacuum bag, sterilization wrap and paper coffee filter) was investigated. The effect of inserts on particle flows mimicking human exhalation is semiquantitatively and qualitatively examined using flow visualization techniques. The following was found: (1) The relationship between FE, ΔP, and QF is complex, and a trade-off exists between personal protection from filtration during inhalation and source control from leakage during exhalation; (2) FE and ΔP of the composite covering increase with IAR, and the rate is dependent upon insert type; (3) improvements (decrements) in the QF of the composite assemblage require inserts with a higher (lower) QF than the fabric and larger differences yield greater gains (losses); (4) the increased ΔP from an insert results in increased leakage during exhalation; (5) to minimize leaks, ΔP must be as low as possible; and (6) small relative areas not covered by an insert (i.e., IAR slightly smaller than 1) strongly deteriorate the benefits of an insert similar to small leaks in a covering.


Subject(s)
Masks , Respiratory Protective Devices , Humans , Aerosols , Textiles , Filtration
4.
ACS Appl Nano Mater ; 4(3): 2694-2701, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-34192243

ABSTRACT

Under high humidity conditions that mimic respiration, the filtration efficiency (FE) of hydrophilic fabrics increases when challenged with hygroscopic nanoparticles, for example, respiratory droplets containing SARS-CoV-2. The FE and differential pressure (ΔP) of natural, synthetic, and blended fabrics were measured as a function of relative humidity (RH) for particles with mobility diameters between 50 and 825 nm. Fabrics were equilibrated at 99% RH, mimicking conditions experienced when worn as a face mask. The FE increased after equilibration at 99% RH by a relative percentage of 33 ± 12% for fabrics composed of two layers of 100% cotton when challenged by 303 nm-mobility-diameter NaCl aerosol. The FE for samples of synthetics and polyester/cotton blends was unchanged upon equilibration at 99% RH. Increases in FE for 100% cotton fabrics were a function of particle size with a relative increase of 63% at the largest measured particle size (825 nm). The experimental results are consistent with increased particle capture due to H2O uptake and growth as the particles traverse the fabric.

5.
Forensic Chem ; 182020.
Article in English | MEDLINE | ID: mdl-33102988

ABSTRACT

Recent work has shown that detectable levels of drugs exists on nearly all surfaces within a forensic laboratory - especially within the drug chemistry unit. This is an expected occurrence due to the handling and opening of drug evidence that contains powder material. The process of opening evidence, which produces aerosolized particulate that can settle on surfaces throughout the lab, has never been visualized. This work presents the first attempt to visualize the spread of particulate throughout the laboratory during the analysis of drug evidence and introduces an easy to implement approach laboratories can use to evaluate their specific protocols. By creating two simulated bricks of drugs that contained fluorescent particles, the spread of particulate was able to be monitored throughout the evidence handling process up to and including cleaning of surfaces after analysis. The protocols in this work, showed the spread of particulate, prior to cleaning, to be quite extensive, with transfer onto surfaces and items that were handled. In this study, cleaning with methanol after processing the evidence was shown to be effective at removing nearly all particulate that was released in the process. The use of visualization techniques such as this demonstrate promise for helping laboratories identify processes in their own protocols that may contribute to drug background levels and educate forensic chemists how trace residues spread.

6.
Analyst ; 145(7): 2743-2750, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32090225

ABSTRACT

Direct analysis in real time mass spectrometry (DART-MS) is seeing increased use in many fields, including forensic science, environmental monitoring, food safety, and healthcare. With increased use, novel configurations of the system have been created to either aid in detection of traditionally difficult compounds or surfaces, provide a more reproducible analysis, and/or chemically image surfaces. This work focuses on increasing the fundamental understanding of one configuration, where the DART ionization gas is confined in a junction, such as with thermal desorption (TD) DART-MS. Using five representative compounds and a suite of visualization tools, the role of the DART ionization gas, Vapur flow rate, gas back pressure, and exit grid voltage were examined to better understand both the chemical and physical processes occurring inside the confined configuration. The use of nitrogen as a DART ionization gas was found to be more beneficial than helium because of enhanced mixing with the analyte vapors, providing a more reproducible response. Lower Vapur flow rates were also found to be advantageous as they increased the analyte residence time in the junction, thus increasing the probability of its ionization. Operation at even lower Vapur flow rates was achieved by modifying the junction to restrict the DART gas flow. The DART exit grid voltage and gas back pressure had little observed impact on analyte response. These results provide the foundation to better understand and identify best practices for using a confined DART-MS configuration.

7.
Forensic Chem ; 202020 Aug.
Article in English | MEDLINE | ID: mdl-34151050

ABSTRACT

While the drug background in forensic laboratories has been quantified, the processes that most contribute to the background have not been extensively researched. This work presents both qualitative visualization and quantitative analysis of the spread of simulant drug particulate during the process of taking net weights. The process was modeled using three masses of powder (0.2 g, 2 g, and 100 g). The net weight process, in which the mixture was poured onto weighing paper, was mimicked and the resulting aerosolized particulate was allowed to settle. Wetted cotton swabs were then used to sample 6.45 cm2 (1 in2) squares extending up to 61 cm (24 in) away from the weigh paper. The swabs were then extracted and quantified using LC-MS/MS and two-dimensional color plots were created to visualize the magnitude of particulate spread. Qualitative flow visualization of the process, accomplished using laser light sheet videography, was also completed to support the quantitative extraction experiments and provide a visual representation of the mechanism of particulate spread. Surface concentrations were found to be highest in the area immediately surrounding the weigh paper, though transport as far as 61 cm (24 in) was observed with all mass loadings. The amount of the material aerosolized and transported on the bench surrounding the weigh paper was dependent upon the mass of material being poured. These results highlight that weighing activities encountered in forensic labs may be a primary contributor to drug background and may be a potential source of inhalation exposure for chemists.

8.
Anal Methods ; 10(2): 204-213, 2018 Jan 14.
Article in English | MEDLINE | ID: mdl-29881468

ABSTRACT

Trace explosives detection, a crucial component of many security screening environments, commonly employs wipe-sampling. Since collection of an explosive residue is necessary for detection, it is important to have a thorough understanding of the parameters that affect the efficiency of collection. Current wipe-sampling evaluation techniques for explosive particles have their limits: manual sampling (with fingers or a wand) is limited in its ability to isolate a single parameter and the TL-slip/peel tester is limited to a linear sample path. A new wipe-sampling instrument, utilizing a commercial off-the-shelf (COTS) 3D printer repurposed for its XYZ stage, was developed to address these limitations. This system allowed, for the first time, automated two-dimensional wipe-sampling patterns to be studied while keeping the force and speed of collection constant for the length of the sampling path. This new instrument is not only capable of investigating the same parameters as current technology (wipe materials, test surfaces, forces of collection, and linear sample patterns), it has added capabilities to investigate additional parameters such as directional wipe patterns (i.e. "L" and "U" shapes, square, and serpentine) and allowing for multiple lines to be sampled during a single collection without the need for adjustments by the user. In this work, parametric studies were completed using 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and the COTS 3D printer for wipe-sampling to establish collection efficiencies for numerous scenarios. Trace explosives detection in field screening environments could be greatly improved with the ability to comprehensively investigate how a wide range of parameters individually affect collection by wipe-sampling. A screener who knows how to properly interrogate any given surface will be much more efficient at detecting trace explosives.

9.
J Vis Exp ; (122)2017 04 10.
Article in English | MEDLINE | ID: mdl-28448003

ABSTRACT

One of the limiting steps to detecting traces of explosives at screening venues is effective collection of the sample. Wipe-sampling is the most common procedure for collecting traces of explosives, and standardized measurements of collection efficiency are needed to evaluate and optimize sampling protocols. The approach described here is designed to provide this measurement infrastructure, and controls most of the factors known to be relevant to wipe-sampling. Three critical factors (the applied force, travel distance, and travel speed) are controlled using an automated device. Test surfaces are chosen based on similarity to the screening environment, and the wipes can be made from any material considered for use in wipe-sampling. Particle samples of the explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) are applied in a fixed location on the surface using a dry-transfer technique. The particle samples, recently developed to simulate residues made after handling explosives, are produced by inkjet printing of RDX solutions onto polytetrafluoroethylene (PTFE) substrates. Collection efficiency is measured by extracting collected explosive from the wipe, and then related to critical sampling factors and the selection of wipe material and test surface. These measurements are meant to guide the development of sampling protocols at screening venues, where speed and throughput are primary considerations.


Subject(s)
Analytic Sample Preparation Methods/methods , Explosive Agents/analysis , Limit of Detection , Explosive Agents/chemistry , Polytetrafluoroethylene/chemistry , Printing , Triazines/analysis , Triazines/chemistry
10.
Sci Rep ; 6: 36876, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27906156

ABSTRACT

Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog's nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the "aerodynamic reach" for inspiration of otherwise inaccessible odors. Chemical sampling and detection experiments quantified two modes of operation with the artificial nose-active sniffing and continuous inspiration-and demonstrated an increase in odorant detection by a factor of up to 18 for active sniffing. A 16-fold improvement in detection was demonstrated with a commercially-available explosives detector by applying this bio-inspired design principle and making the device "sniff" like a dog. These lessons learned from the dog may benefit the next-generation of vapor samplers for explosives, narcotics, pathogens, or even cancer, and could inform future bio-inspired designs for optimized sampling of odor plumes.


Subject(s)
Electronic Nose , Printing, Three-Dimensional , Smell , Animals , Biomimetics , Dogs , Nose/anatomy & histology , Nose/physiology
11.
Int J Ion Mobil Spectrom ; 19: 41-49, 2016.
Article in English | MEDLINE | ID: mdl-27429581

ABSTRACT

Sample collection for Ion Mobility Spectrometry (IMS) analysis is typically completed by swiping a collection wipe over a suspect surface to collect trace residues. The work presented here addresses the need for a method to measure the collection efficiency performance of surface wipe materials as a function of the number of times a wipe is used to interrogate a surface. The primary purpose of this study is to investigate the effect of wipe reuse, i.e., the number of times a wipe is swiped across a surface, on the overall particle collection and IMS response. Two types of collection wipes (Teflon coated fiberglass and Nomex) were examined by swiping multiple times, ranging from 0 to 1000, over representative surfaces that are common to security screening environments. Particle collection efficiencies were determined by fluorescence microscopy and particle counting techniques, and were shown to improve dramatically with increased number of swiping cycles. Ion mobility spectrometry was used to evaluate the chemical response of known masses of explosives (deposited after reusing wipes) as a function of the wipe reuse number. Results show that chemical response can be negatively affected, and greatly depends upon the conditions of the surface in which the wipe is interrogating. For most parameters tested, the PCE increased after the wipe was reused several times. Swiping a dusty cardboard surface multiple times also caused an increase in particle collection efficiency but a decrease in IMS response. Scanning electron microscopy images revealed significant surface degradation of the wipes on dusty cardboard at the micrometer spatial scale level for Teflon coated wipes. Additionally, several samples were evaluated by including a seven second thermal desorption cycle at 235°C into each swipe sampling interval in order to represent the IMS heating cycle. Results were similar to studies conducted without this heating cycle, suggesting that the primary mechanism for wipe deterioration is mechanical rather than thermal.

12.
Anal Methods ; 8(35): 6494-6499, 2016.
Article in English | MEDLINE | ID: mdl-28630654

ABSTRACT

The need to analyze trace narcotic samples rapidly for screening or confirmatory purposes is of increasing interest to the forensic, homeland security, and criminal justice sectors. This work presents a novel method for the detection and quantification of trace drugs and metabolites off of a swipe material using a thermal desorption direct analysis in real time mass spectrometry (TD-DART-MS) configuration. A variation on traditional DART, this configuration allows for desorption of the sample into a confined tube, completely independent of the DART source, allowing for more efficient and thermally precise analysis of material present on a swipe. Over thirty trace samples of narcotics, metabolites, and cutting agents deposited onto swipes were rapidly differentiated using this methodology. The non-optimized method led to sensitivities ranging from single nanograms to hundreds of picograms. Direct comparison to traditional DART with a subset of the samples highlighted an improvement in sensitivity by a factor of twenty to thirty and an increase in reproducibility sample to sample from approximately 45 % RSD to less than 15 % RSD. Rapid extraction-less quantification was also possible.

13.
ACS Appl Mater Interfaces ; 7(45): 25539-45, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26501940

ABSTRACT

The persistent hydrogen termination present in nanoporous silicon (nPS) is unique compared to other forms of nanoscale silicon (Si) which typically readily form a silicon dioxide passivation layer. The hydrogen terminated surface combined with the extremely high surface area of nPS yields a material capable of powerful exothermic reactions when combined with strong oxidizers. Here, a galvanic etching mechanism is used to produce nPS both in bulk Si wafers as well as in patterned regions of Si wafers with microfabricated ignition wires. An explosive composite is generated by filling the pores with sodium perchlorate (NaClO4). Using high-speed video including Schlieren photography, a shock wave is observed to propagate through air at 1127 ± 116 m/s. Additionally, a fireball is observed above the region of nPS combustion which persists for nearly 3× as long when reacted in air compared to N2, indicating that highly reactive species are generated that can further combust with excess oxygen. Finally, reaction products from either nPS-NaClO4 composites or nPS alone combusted with only high pressure O2 (400 psig) gas as an oxidizer are captured in a calorimeter bomb. The products in both cases are similar and verified by transmission electron microscopy (TEM) to include nano- to micrometer scale SiOx particles. This work highlights the complex oxidation mechanism of nPS composites and demonstrates the ability to use a solid state reaction to create a secondary gas phase combustion.

14.
J Mater Sci Mater Med ; 25(11): 2481-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25011499

ABSTRACT

The use of silver nanoparticles (AgNPs) in textiles for enhanced anti-microbial properties has led to concern about their release and impact on both human and environmental health. Here a novel method for in situ visualization of AgNP release from silver-impregnated wound dressings is introduced. By combining an environmental scanning electron microscope, a gaseous analytical detector and a peltier cooling stage, this technique provides near-instantaneous nanoscale characterization of interactions between individual water droplets and AgNPs. We show that dressings with different silver application methods have very distinct AgNP release dynamics. Specifically, water condensation on dressings with AgNP deposited directly on the fiber surface resulted in substantial and rapid AgNP release. By comparison, AgNP release from wound dressing with nanoparticles grown, not deposited, from the fiber surface was either much slower or negligible. Our methodology complements standard bulk techniques for studying of silver release from fabrics by providing dynamic nanoscale information about mechanisms governing AgNP release from individual fibers. Thus coupling these nano and macro-scale methods can provide insight into how the wound dressing fabrication could be engineered to optimize AgNP release for different applications.


Subject(s)
Bandages , Delayed-Action Preparations/chemistry , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Silver/administration & dosage , Silver/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Delayed-Action Preparations/administration & dosage , Diffusion , Materials Testing/methods , Molecular Imaging/methods
15.
Analyst ; 139(11): 2668-73, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24710465

ABSTRACT

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to determine the effect of ambient probe incidence angle on the amount and direction of analyte molecules transported from the sample surface for desorption electrospray ionization (DESI). Incidence angle was critical to both the lateral dispersion and vertical take-off angles of analyte molecules desorbed from the surface; as the incidence angle was increased from 30° to 45° to 60° (relative to the sample surface), the lateral dispersion angle decreased from 79° to 71° to 62°, respectively, while the vertical take-off angle decreased dramatically from 12° to 6° to 4°, respectively. As for the amount of material transported, the ToF-SIMS normalized secondary ion intensity of the molecular ion (peak counts per total spectrum counts) showed a significant decrease in the signal when the incidence angle was made steeper, decreasing from 8.1 × 10(-3) to 4.2 × 10(-3) to 7.5 × 10(-4), respectively. The ambient mass spectrometer interfaced with DESI also showed a similar analyte response, where the intensity of the molecular ion decreased from 1.6 × 10(7) counts to 3.3 × 10(6) counts to 5.4 × 10(5) counts, respectively. Overall, a steeper incidence angle was characterized by smaller amount of material desorption and tighter dispersion in both lateral and vertical directions. The study showed how ToF-SIMS can be used as a unique tool for characterizing the transport of desorbed analyte molecules in ambient ionization mass spectrometry, potentially offering new interface designs for optimal analyte collection.

16.
Int J Ion Mobil Spectrom ; 17(2): 69-72, 2014.
Article in English | MEDLINE | ID: mdl-26321879

ABSTRACT

This paper describes a method for combining direct chemical analysis of latent fingerprints with subsequent biometric analysis within a single sample. The method described here uses ion mobility spectrometry (IMS) as a chemical detection method for explosives and narcotics trace contamination. A collection swab coated with a high-temperature adhesive has been developed to lift latent fingerprints from various surfaces. The swab is then directly inserted into an IMS instrument for a quick chemical analysis. After the IMS analysis, the lifted print remains intact for subsequent biometric scanning and analysis using matching algorithms. Several samples of explosive-laden fingerprints were successfully lifted and the explosives detected with IMS. Following explosive detection, the lifted fingerprints remained of sufficient quality for positive match scores using a prepared gallery consisting of 60 fingerprints. Based on our results (n = 1200), there was no significant decrease in the quality of the lifted print post IMS analysis. In fact, for a small subset of lifted prints, the quality was improved after IMS analysis. The described method can be readily applied to domestic criminal investigations, transportation security, terrorist and bombing threats, and military in-theatre settings.

17.
Anal Chem ; 84(24): 10763-7, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23137275

ABSTRACT

The feasibility of a low temperature plasma (LTP) probe as a way to prepare polymer bevel cross sections for secondary ion mass spectrometry (SIMS) applications was investigated. Poly(lactic acid) and poly(methyl methacrylate) films were etched using He LTP, and the resulting crater walls were depth profiled using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to examine changes in chemistry over the depth of the film. ToF-SIMS results showed that while exposure to even 1 s of plasma resulted in integration of atmospheric nitrogen and contaminants to the newly exposed surface, the actual chemical modification to the polymer backbone was found to be chemistry-dependent. For PLA, sample modification was confined to the top 15 nm of the PLA surface regardless of plasma exposure dose, while measurable change was not seen for PMMA. The confinement of chemical modification to 15 nm or less of the top surface suggests that LTP can be used as a simple method to prepare cross sections or bevels of polymer thin films for subsequent analysis by surface-sensitive molecular depth profiling techniques such as SIMS, X-ray photoelectron spectroscopy (XPS), and other spatially resolved mass spectrometric techniques.

18.
Analyst ; 137(11): 2614-22, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22498665

ABSTRACT

In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.

19.
Analyst ; 136(19): 3967-72, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21837352

ABSTRACT

Swipe-based explosive trace detectors rely on thermal desorption to vaporize explosive particles collected on a swipe. The vaporized material is carried by air flows from the desorption unit to the inlet of the chemical analyzer, typically an ion mobility spectrometer. We have observed that the amount of explosives detected from a swipe varies with the physical location of explosives collected on the swipe. There are two issues that may contribute to this effect: inhomogeneous or insufficient heating of the swipe during desorption and low velocity air flows that inefficiently transport desorbed vapor during the instruments analysis time. To better characterize this effect, we have simulated the air movements within a generic desorption unit using commercially available computational fluid dynamics software. Simulations are three dimensional, symmetric and solved under steady, laminar flow conditions. The calculated velocity field correlates directly with experimental detector response to the high explosive RDX. Results suggest that the limiting factor in this model thermal desorption unit is the flow-field around the swipe and flow rate into the detector, rather than heat transfer to the swipe itself. Buoyancy effects due to heating dominate the flow-field and produce a vertical bulk fluid motion within the domain that opposes much of the flow drawn into the analyzer.

20.
Talanta ; 76(4): 949-55, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18656683

ABSTRACT

We present a methodology for fabricating polymer microspheres using inkjet printing of a biodegradable polymer containing either high explosives or high explosive simulant. Poly(DL-lactide/glycolide) 85:15 (PLGA) microsphere production is based on an oil/water emulsion solvent extraction process. The inkjet printing process allows for precise control of the microsphere diameter and the chemical composition. The microspheres can be used as calibrants or verification standards for explosives trace detection instruments. Gas chromatography/mass spectrometry analysis demonstrated that the composition of the microspheres was consistent with predicted concentrations based on the amount of analyte incorporated into the polymer solution and the inkjet operating parameters. We have demonstrated that the microspheres can be fabricated with a mass fraction of 70% of an analyte compound.

SELECTION OF CITATIONS
SEARCH DETAIL
...