Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Nature ; 565(7740): 516-520, 2019 01.
Article in English | MEDLINE | ID: mdl-30602789

ABSTRACT

Type A γ-aminobutyric acid (GABAA) receptors are pentameric ligand-gated ion channels and the main drivers of fast inhibitory neurotransmission in the vertebrate nervous system1,2. Their dysfunction is implicated in a range of neurological disorders, including depression, epilepsy and schizophrenia3,4. Among the numerous assemblies that are theoretically possible, the most prevalent in the brain are the α1ß2/3γ2 GABAA receptors5. The ß3 subunit has an important role in maintaining inhibitory tone, and the expression of this subunit alone is sufficient to rescue inhibitory synaptic transmission in ß1-ß3 triple knockout neurons6. So far, efforts to generate accurate structural models for heteromeric GABAA receptors have been hampered by the use of engineered receptors and the presence of detergents7-9. Notably, some recent cryo-electron microscopy reconstructions have reported 'collapsed' conformations8,9; however, these disagree with the structure of the prototypical pentameric ligand-gated ion channel the Torpedo nicotinic acetylcholine receptor10,11, the large body of structural work on homologous homopentameric receptor variants12 and the logic of an ion-channel architecture. Here we present a high-resolution cryo-electron microscopy structure of the full-length human α1ß3γ2L-a major synaptic GABAA receptor isoform-that is functionally reconstituted in lipid nanodiscs. The receptor is bound to a positive allosteric modulator 'megabody' and is in a desensitized conformation. Each GABAA receptor pentamer contains two phosphatidylinositol-4,5-bisphosphate molecules, the head groups of which occupy positively charged pockets in the intracellular juxtamembrane regions of α1 subunits. Beyond this level, the intracellular M3-M4 loops are largely disordered, possibly because interacting post-synaptic proteins are not present. This structure illustrates the molecular principles of heteromeric GABAA receptor organization and provides a reference framework for future mechanistic investigations of GABAergic signalling and pharmacology.


Subject(s)
Cryoelectron Microscopy , Lipid Bilayers/chemistry , Receptors, GABA-A/chemistry , Receptors, GABA-A/ultrastructure , Allosteric Regulation , Amino Acid Sequence , Binding Sites , Electric Conductivity , Humans , Models, Molecular , Molecular Docking Simulation , Nanostructures/chemistry , Nanostructures/ultrastructure , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Protein Structure, Quaternary , Receptors, GABA-A/metabolism
2.
Oncotarget ; 9(9): 8560-8572, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29492217

ABSTRACT

Despite intensive research no therapies targeted against the oncogenic EGFRvIII are present in the clinic. One of the reasons is the elusive nature of the molecular structure and activity of the truncated receptor. The recent publications indicate the EGF-bound wild-type EGFR to trans-phosphorylate the EGFRvIII initiating aberrant signaling cascade. The elevated stability of the mutant receptor contributes towards oncogenic potential, preventing termination of signaling by receptor degradation. Here, we show that inhibition of phosphatases leads to a marked increase in phosphorylation of wild-type EGFR and EGFRvIII, indicating that both undergo cyclic rounds of phosphorylation and dephosphorylation on all investigated tyrosine residues, including Tyr1045. Still, we observe elevated stability of the mutant receptor, suggesting phosphorylation as insufficient to cause degradation. Hyperphosphorylation of EGFRvIII was hindered only by EGFR tyrosine kinase inhibitors. Co-immunoprecipitation as well as semi-native Western blotting structural analyses together with functional investigation of EGFRvIII's phosphorylation following depletion of wild-type EGFR by shRNA or EGF-mediated degradation indicated homodimerization as the predominant quaternary structure of the mutant receptor. Dimers were observed only under non-reducing conditions, suggesting that homodimerization is mediated by covalent bonds. Previous reports indicated cysteine at position 16 to mediate covalent homodimerization. Upon its substitution to serine, we have observed impaired formation of dimers and lower phosphorylation levels of the mutated oncogene. Based on the obtained results we propose that EGFRvIII is predominantly regulated dynamically by phosphatases that counteract the process of trans-phosphorylation occurring within the homodimers.

3.
PLoS One ; 13(1): e0191583, 2018.
Article in English | MEDLINE | ID: mdl-29352320

ABSTRACT

The inhibitory γ-aminobutyric acid type A receptors are implicated in numerous physiological processes, including cognition and inhibition of neurotransmission, rendering them important molecular targets for many classes of drugs. Functionally, the entire GABAAR family of receptors can be subdivided into phasic, fast acting synaptic receptors, composed of α-, ß- and γ-subunits, and tonic extrasynaptic receptors, many of which contain the δ-subunit in addition to α- and ß-subunits. Whereas the subunit arrangement of the former group is agreed upon, that of the αßδ GABAARs remains unresolved by electrophysiological and pharmacological research. To resolve such issues will require biophysical techniques that demand quantities of receptor that have been previously unavailable. Therefore, we have engineered a stable cell line with tetracycline inducible expression of human α4-, ß3- and N-terminally Flag-tagged δ-subunits. This cell line achieved a specific activity between 15 and 20 pmol [3H]muscimol sites/mg of membrane protein, making it possible to obtain 1 nmole of purified α4ß3δ GABAAR from sixty 15-cm culture dishes. When induced, these cells exhibited agonist-induced currents with characteristics comparable to those previously reported for this receptor and a pharmacology that included strong modulation by etomidate and the δ-subunit-specific ligand, DS2. Immunoaffinity purification and reconstitution in CHAPS/asolectin micelles resulted in the retention of equilibrium allosteric interactions between the separate agonist, anesthetic and DS2 sites. Moreover, all three subunits retained glycosylation. The establishment of this well-characterized cell line will allow molecular level studies of tonic receptors to be undertaken.


Subject(s)
Receptors, GABA-A/biosynthesis , Electrophysiological Phenomena , HEK293 Cells , Humans , Kinetics , Protein Engineering , Protein Subunits , Radioligand Assay , Receptors, GABA-A/genetics , Receptors, GABA-A/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Transfection , gamma-Aminobutyric Acid/metabolism
4.
J Cancer ; 8(1): 146-151, 2017.
Article in English | MEDLINE | ID: mdl-28123609

ABSTRACT

Background: The presence as well as the potential role of EGFRvIII in tumors other than glioblastoma still remains a controversial subject with many contradictory data published. Previous analyses, however, did not consider the level of EGFRvIII mRNA expression in different tumor types. Methods: Appropriately designed protocol for Real-time quantitative reverse-transcription PCR (Real-time qRT-PCR) was applied to analyze EGFRvIII and EGFRWT mRNA expression in 155 tumor specimens. Additionally, Western Blot (WB) analysis was performed for selected samples. Stable cell lines showing EGFRvIII expression (CAS-1 and DK-MG) were analyzed by means of WB, immunocytochemistry (ICC) and fluorescence in situ hybridization (FISH). Results: Our analyses revealed EGFRvIII expression in 27.59% of glioblastomas (8/29), 8.11% of colorectal cancers (3/37), 6.52% of prostate cancers (3/46) and none of breast cancers (0/43). Despite the average relative expression of EGFRvIII varying greatly among tumors of different tissues (approximately 800-fold) or even within the same tissue group (up to 8000-fold for GB), even the marginal expression of EGFRvIII mRNA can be detrimental to cancer progression, as determined by the analysis of stable cell lines endogenously expressing the oncogene. Conclusion: EGFRvIII plays an unquestionable role in glioblastomas with high expression of this oncogene. Our data suggests that EGFRvIII importance should not be underestimated even in tumors with relatively low expression of this oncogene.

5.
Bioorg Chem ; 67: 110-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27337226

ABSTRACT

T4 DNA ligase is one of the most commonly used enzymes for in vitro molecular research and a useful model for testing the ligation mechanism of ATP-dependent DNA ligation. To better understand the influence of phosphate group modifications in the ligation process, a series of ATP analogs were tested as cofactors. P-diastereomers of newly developed ß,γ-hypo-ATPαS (thio) and ß,γ-hypo-ATP (oxo) were synthesized and their activity was compared to ATPαS and their natural precursors. The evaluation of presented ATP analogs revealed the importance of the α-phosphate stereogenic center in ATPαS for the T4 DNA ligase activity and sheds new light on the interaction between ATP-dependent DNA ligases and cofactors.


Subject(s)
Adenosine Triphosphate/metabolism , DNA Ligases/metabolism , Phosphates/metabolism , Sulfhydryl Compounds/metabolism , Adenosine Triphosphate/chemistry , DNA Ligases/chemistry , Molecular Structure , Phosphates/chemical synthesis , Phosphates/chemistry , Sulfhydryl Compounds/chemistry
6.
PLoS One ; 11(5): e0154726, 2016.
Article in English | MEDLINE | ID: mdl-27145078

ABSTRACT

BACKGROUND: The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. METHODS: Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. RESULTS: Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. CONCLUSIONS: Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust apoptosis causes differentiation deficiency of IDH1R132H-expressing cells.


Subject(s)
Apoptosis/physiology , Cell Differentiation/physiology , Isocitrate Dehydrogenase/metabolism , Neural Stem Cells/metabolism , Astrocytes/metabolism , Biomarkers/metabolism , Caspase 3/metabolism , Cell Lineage/physiology , Cells, Cultured , Embryoid Bodies/metabolism , Glioma/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Neurogenesis/physiology , Neurons/metabolism
7.
Oncotarget ; 7(22): 31907-25, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27004406

ABSTRACT

Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII.The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach.


Subject(s)
Brain Neoplasms/enzymology , Drug Discovery/methods , ErbB Receptors/metabolism , Glioblastoma/enzymology , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Dose-Response Relationship, Drug , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , High-Throughput Screening Assays , Humans , Neoplasm Invasiveness , Phenotype , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Time Factors , Transfection , Tumor Cells, Cultured
8.
Mol Biol Cell ; 27(3): 434-41, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26658615

ABSTRACT

Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms.


Subject(s)
Drosophila Proteins/physiology , Intracellular Signaling Peptides and Proteins/physiology , Signal Transduction , Amino Acid Sequence , Animals , Cell Line , Drosophila Proteins/metabolism , Drosophila melanogaster , Endocytosis , Janus Kinases/metabolism , Molecular Sequence Data , Protein Binding , Protein Stability , Protein Transport , Proteolysis , Receptors, Interleukin/metabolism , STAT Transcription Factors/metabolism , Transcription, Genetic
9.
Biochim Biophys Acta ; 1840(12): 3357-66, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25199874

ABSTRACT

BACKGROUND: One of the activities of histidine triad nucleotide-binding protein 1 (Hint1) under in vitro conditions is the conversion of nucleoside 5'-O-phosphorothioate (NMPS) to its 5'-O-phosphate (NMP), which is accompanied by the release of hydrogen sulfide. METHODS: Non-hydrolyzable derivatives of AMPS and dCMPS, each containing the residue able to form a covalent bond in nucleic acid-protein complexes via photocrosslinking (at 308nm), were applied at the complexing experiments with recombinant and cellular Hint1. The cellular lysates prepared after RNAi-mediated knockdown of Hint1 were incubated with AMPS and the level of desulfuration was measured. RESULTS: Recombinant Hint1 and Hint1 present in the cellular lysate of A549 cells, formed complexes with the used substrate analogs. Computer modeling experiments, in which the ligand was docked at the binding pocket, confirmed that direct interactions between Hint1 and the screened analogs are possible. Using RNAi technology, we demonstrated lowered levels of AMPS substrate desulfuration in reactions that employed the cell lysates with a reduced Hint1 level. CONCLUSIONS: The enzymatic conversion of AMPS to AMP occurred with the participation of cellular Hint1, the protein, which is present in all organisms. GENERAL SIGNIFICANCE: The intracellular Hint1 could be responsible for the in vivo desulfuration of nucleosides-5'-monophosphorothioate, thus it can contribute to the phosphorothioate oligonucleotides metabolism. H2S released during this process may participate in several physiological processes, thus NMPSs can be precursors/donors of H2S in vivo and can be used to study the effects of this gas in biological systems. Moreover, the controlled delivery of (d)NMPSs into cells may be of medicinal utility.

10.
Mol Biol Cell ; 24(18): 3000-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23885117

ABSTRACT

Conserved from humans to Drosophila, the Janus kinase/signal transducer and activators of transcription (JAK/STAT) signaling cascade is essential for multiple developmental and homeostatic processes, with regulatory molecules controlling pathway activity also highly conserved. We characterize the Drosophila JAK/STAT pathway regulator SOCS36E and show that it functions via two independent mechanisms. First, we show that Drosophila Elongin B/C and Cullin-5 act via the SOCS-box of SOCS36E to reduce pathway activity specifically in response to ligand stimulation--a process that involves endocytic trafficking and lysosomal degradation of the Domeless (Dome) receptor. Second, SOCS36E also suppresses both stimulated and basal pathway activity via an Elongin/Cullin-independent mechanism that is mediated by the N-terminus of SOCS36E, which is required for the physical interaction of SOCS36E with Dome. Although some human SOCS proteins contain N-terminal kinase-inhibitory domains, we do not identify such a region in SOCS36E and propose a model wherein the N-terminal of SOCS36E blocks access to tyrosine residues in Dome. Our biochemical analysis of a SOCS-family regulator from a lower organism highlights the fundamental conserved roles played by regulatory mechanisms in signal transduction.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Drosophila Proteins/chemistry , Humans , Lysosomes/metabolism , Mutant Proteins/metabolism , Phosphorylation , Protein Binding , Protein Stability , Proteolysis , Receptors, Interleukin/metabolism , Suppressor of Cytokine Signaling Proteins/chemistry , src Homology Domains
11.
J Signal Transduct ; 2011: 894510, 2011.
Article in English | MEDLINE | ID: mdl-22203896

ABSTRACT

The importance of signal transduction cascades such as the EGFR and JAK/STAT pathways for development and homeostasis is highlighted by the high levels of molecular conservation maintained between organisms as evolutionary diverged as fruit flies and humans. This conservation is also mirrored in many of the regulatory mechanisms that control the extent and duration of signalling in vivo. One group of proteins that represent important physiological regulators of both EGFR and JAK/STAT signalling is the members of the SOCS family. Only 3 SOCS-like proteins are encoded by the Drosophila genome, and despite this low complexity, Drosophila SOCS proteins share many similarities to their human homologues. SOCS36E is both a target gene and negative regulator of JAK/STAT signalling while SOCS44A and SOCS36E represent positive and negative regulators of EGFR signalling. Here we review our current understanding of Drosophila SOCS proteins, their roles in vivo, and future approaches to elucidating their functions.

12.
Bioorg Med Chem ; 19(16): 5053-60, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21757356

ABSTRACT

Fragile histidine triad (Fhit) protein encoded by tumour suppressor FHIT gene is a proapoptotic protein with diadenosine polyphosphate (Ap(n)A, n=2-6) hydrolase activity. It has been hypothesised that formation of Fhit-substrate complex results in an apoptosis initiation signal while subsequent hydrolysis of Ap(n)A terminates this action. A series of Ap(n)A analogues have been identified in vitro as strong Fhit ligands [Varnum, J. M.; Baraniak, J.; Kaczmarek, R.; Stec, W. J.; Brenner, C. BMC Chem. Biol.2001, 1, 3]. We assumed that in Fhit-positive cells these compounds might preferentially bind to Fhit and inhibit its hydrolytic activity what would prolong the lifetime of apoptosis initiation signalling complex. Therefore, several Fhit inhibitors were tested for their cytotoxicity and ability to induce apoptosis in Fhit-positive HEK293T cells. These experiments have shown that Ap(4)A analogue, containing a glycerol residue instead of the central pyrophosphate and two terminal phosphorothioates [A(PS)-CH(2)CH(OH)CH(2)-(PS)A (1)], is the most cytotoxic among test compounds (IC(50)=17.5±4.2 µM) and triggers caspase-dependent cell apoptosis. The Fhit-negative HEK293T cells (in which Fhit was silenced by RNAi) were not sensitive to compound 1. These results indicate that the Ap(4)A analogue 1 induces Fhit-dependent apoptosis and therefore, it can be considered as a drug candidate for anticancer therapy in Fhit-positive cancer cells and in Fhit-negative cancer cells, in which re-expression of Fhit was accomplished by gene therapy.


Subject(s)
Acid Anhydride Hydrolases/physiology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Survival/drug effects , Dinucleoside Phosphates/pharmacology , Neoplasm Proteins/physiology , Neoplasms/drug therapy , Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/metabolism , Annexin A5/analysis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Caspases/analysis , Caspases/drug effects , Cell Line, Tumor , Cytotoxins , Dinucleoside Phosphates/chemistry , Dinucleoside Phosphates/physiology , Dinucleoside Phosphates/therapeutic use , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Fluorescent Dyes/analysis , Genes, Tumor Suppressor/drug effects , HEK293 Cells , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , RNA, Small Interfering/metabolism
13.
Antivir Chem Chemother ; 21(3): 143-50, 2011.
Article in English | MEDLINE | ID: mdl-21233535

ABSTRACT

BACKGROUND: pyrimidine nucleoside analogues represent an established class of clinically useful antiviral agents. Once inside the cell, they are activated by a series of intracellular phosphorylation steps to produce 5´-triphosphate derivatives. In many cases, nucleoside analogues are poor substrates for the cellular kinases needed for their activation. It is clear that intracellular introduction of nucleoside analogues as phosphorylated metabolites (so called pronucleotides) could circumvent difficulties associated with the use of non-phosphorylated nucleoside analogues. METHODS: among the current diverse pronucleotide approaches, nucleoside phosphoramidate derivatives appear to be an interesting class of potential antiviral agents because of the known relatively low stability of the P-N bond in cellular media. On the basis of oxathiaphospholane chemistry, a series of novel conjugates of 5´-O-phosphorylated zidovudine (AZT) and stavudine (d4T) with amino acids carboxamidates were obtained. The synthesis was performed using N-(2-thiono-1,3,2-oxathiaphospholane) derivatives of amino acids carboxamides as precursors. RESULTS: all synthesized compounds were studied against DNA and RNA viruses. Specific antiviral activities were only detected against HIV type-1 and HIV type-2 in MT-4 cell cultures at compound concentrations that were equally active or slightly inferior to the activity of their parent drugs (2- to 20-fold for the AZT prodrugs and 6- to 40-fold for the d4T prodrugs). The compounds were also evaluated for their anti-HIV activity in CEM and in CEM thymidine-kinase-deficient (CEM/TK(-)) cell cultures. CONCLUSIONS: loss of compound antiviral potency in the CEM/TK(-) cells suggested an eventual conversion of the test compounds to the free nucleosides prior to further phosphorylation to the active 5´-triphosphate metabolite.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Phosphoric Acids/chemical synthesis , Phosphoric Acids/pharmacology , Antiviral Agents/chemistry , Cell Culture Techniques , HeLa Cells , Humans
14.
Chirality ; 23(3): 237-44, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20928893

ABSTRACT

A method for stereocontrolled chemical synthesis of P-substituted nucleoside 5'-O-phosphorothioates has been elaborated. Selected 3'-O-acylated deoxyribonucleoside- and 2',3'-O,O-diacylated ribonucleoside-5'-O-(2-thio-4,4-pentamethylene-1,3,2-oxathiaphospholane)s were chromatographically separated into P-diastereomers. Their reaction with anions of phosphorus-containing acids was highly stereoselective (≥90%) and furnished corresponding P-chiral α-thiodiphosphates and their phosphonate analogs with satisfactory yield.


Subject(s)
Nucleosides/analysis , Nucleosides/chemistry , Nucleotides/analysis , Nucleotides/chemistry , Phosphorothioate Oligonucleotides/chemical synthesis , Ribose/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Deoxyribonucleosides/chemistry , Dinucleoside Phosphates/chemistry , Hydrolysis , Organic Chemistry Phenomena , Ribose/analysis , Ribose/chemistry , Stereoisomerism , Thymidine/chemistry
15.
Org Biomol Chem ; 8(24): 5505-10, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-20944857

ABSTRACT

A new method for the formation of organohypophosphates containing a P-P bond under mild conditions, based on the DBU-assisted reaction of 2-alkoxy-2-thio-1,3,2-oxathiaphospholanes with O,O-dialkyl H-phosphonates or H-thiophosphonates, has been elaborated. The resulting triesters of P(1)-thio- and P(1),P(2)-dithiohypophosphoric acids, respectively, having O-methyl or O-ethyl groups, can be selectively dealkylated to form the corresponding di- or monoesters. Appropriately protected 2'-deoxyguanosine-3'-O-(2-thio-1,3,2-oxathiaphospholane) was converted into the corresponding P(1)-thio- and P(1),P(2)-dithiohypophosphate esters in a highly stereoselective manner (98%+ and 90%+, respectively).


Subject(s)
Nucleotides/chemistry , Organophosphonates/chemistry , Ribose/analogs & derivatives , Sulfhydryl Compounds/chemistry , Alkylation , Molecular Structure , Ribose/chemistry , Stereoisomerism
16.
J Cell Sci ; 123(Pt 20): 3457-66, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20841381

ABSTRACT

Appropriate regulation of signal transduction pathways is essential for normal development and is often disrupted in disease. Therefore, many regulatory mechanisms and feedback loops have evolved to ensure appropriate signalling. One mechanism previously suggested to modulate a range of signal transduction pathways involves the internalisation and destruction of transmembrane receptors by the endocytic trafficking machinery. Strikingly, a recent report has suggested that the endocytic trafficking of the Drosophila JAK-STAT pathway receptor Domeless (Dome) does not act to downregulate pathway activity, but rather is necessary for in vivo signalling. Here, we examine this relationship to address the interaction of Drosophila JAK-STAT pathway signalling and endocytic trafficking. We show that Dome is trafficked through clathrin-mediated endocytosis and a directed RNAi screen identified several components of the endocytic machinery as negative regulators of pathway signalling. We demonstrate that Dome signals both from the plasma membrane and internalised vesicles and show, using knockdown experiments, that endocytic components negatively regulate JAK-STAT signalling in vivo. As such, disruption in endocytic trafficking represents a potent negative regulator of the disease relevant JAK-STAT signalling cascade.


Subject(s)
Drosophila Proteins/metabolism , Endocytosis/physiology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Adaptor Protein Complex alpha Subunits/genetics , Adaptor Protein Complex alpha Subunits/metabolism , Animals , Cell Line , Cell Membrane/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila , Drosophila Proteins/genetics , Endocytosis/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Janus Kinases/genetics , Polymerase Chain Reaction , Protein Transport/genetics , Protein Transport/physiology , RNA Interference , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , STAT Transcription Factors/genetics , Signal Transduction/genetics , Transcription Factors/genetics
17.
Biometals ; 23(6): 1113-21, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20589414

ABSTRACT

The 3'-exonuclease from human plasma is a soluble form of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) (EC 3.1.4.1/EC 3.6.1.9). Here, the possibility of divalent cation influence for the 3'-exonuclease activity was investigated using the phosphorothioate congener of oligonucleotide containing all phosphorothioate internucleotide linkages of the [R(P)]-configuration ([R(P)-PS]-d[T(12)]) as the substrate for this enzyme. It was found that the 3'-exonuclease is a metalloenzyme, i.e. its phosphodiesterase activity was completely abolished at 0.8 mM concentration EDTA and, in turn, it was restored in the presence of Mg(2+) or Mn(2+) ions. In addition, Mg(2+) can be replaced effectively by Ca(2+), Mn(2+), or Co(2+), but not by Ni(2+) and Cd(2+) during the hydrolysis of the phosphorothioate substrate in human plasma. In addition, the mechanism is postulated, by which a single internucleotide phosphorothioate bond of the S(P)-configuration at the 3'-end of unmodified phosphodiesters (PO-oligos), or their phosporothioate analogs (PS-oligos) protects these compounds against degradation in blood.


Subject(s)
Cations, Divalent/pharmacology , Exonucleases/blood , Catalysis/drug effects , Edetic Acid/pharmacology , Exonucleases/drug effects , Exonucleases/metabolism , Humans , Magnesium/pharmacology , Manganese/pharmacology , Models, Chemical , Phosphates/metabolism , Thionucleotides/metabolism
18.
J Org Chem ; 74(17): 6819-24, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19642660

ABSTRACT

R7128 is the prodrug of 2'-deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130), a potent and selective inhibitor of HCV NS5B polymerase. Currently, R7128 is in clinical trials for the treatment of HCV infection. To support clinical development efforts, we needed an efficient and scalable synthesis of PSI-6130. We describe an improved, diastereoselective synthetic route starting with protected d-glyceraldehyde. No chiral reagents or catalysts were used to produce the three new contiguous stereocenters. Introduction of fluorine at the C-2 tertiary carbon was accomplished in a highly regio- and stereoselective manner through nucleophilic substitution on a cyclic sulfate. Scale-limiting chromatographic purifications were eliminated through the use of crystalline intermediates.


Subject(s)
Antiviral Agents/chemical synthesis , Chemistry, Pharmaceutical/methods , Deoxycytidine/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Carbon/chemistry , Chemistry, Organic/methods , Chromatography/methods , Deoxycytidine/chemical synthesis , Deoxycytidine/chemistry , Drug Design , Fluorine/chemistry , Glyceraldehyde/chemistry , Glycosylation , Lactones , Models, Chemical , Phosphoranes/chemistry , Stereoisomerism
19.
Org Biomol Chem ; 7(10): 2162-9, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19421455

ABSTRACT

A new type of internucleotide phosphorodithioate linkage is described, wherein one of the sulfur atoms occupies a 5'-bridging position. Representative dinucleotides possessing such a bond were synthesized by S-alkylation of nucleoside-3'-O-phosphorodithioates with 5'-halogeno-5'-deoxy-nucleosides. A fully protected dithymidylate containing internucleotide 5'-S-phosphorodithioate linkage was converted into a 3'-O-phosphoramidite derivative and employed for introduction of a modified dinucleotide into a predetermined position of the oligonucleotide sequence. The 5'-S-phosphorodithioate linkage in dinucleotide analogues was found to be resistant toward nucleolytic degradation with snake venom PDE and nuclease P1. However, P-stereoselective degradation was observed for diastereomers of 5'-S-phosphorodithioate dithymidine analogs under treatment with calf spleen PDE. The new 5'-S-phosphorodithioate linkage was readily degraded by iodine solutions in the presence of water. It was also found that oligothymidylates containing a single 5'-S-phosphorodithioate linkage form much weaker duplexes with their complementary sequences.


Subject(s)
Oligodeoxyribonucleotides/chemical synthesis , Organothiophosphorus Compounds/chemical synthesis , Phosphates/chemistry , Sulfur/chemistry , Dinucleoside Phosphates/chemistry , Nucleic Acid Conformation , Oligonucleotides/chemistry
20.
Mol Biotechnol ; 40(2): 119-26, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18769882

ABSTRACT

Influence of stereochemistry of the 3'-terminal phosphorothioate (PS)-modified primers was studied in a single base extension (SBE) assay to evaluate any improvements in specificity. SBE reactions were catalyzed by members of the high fidelity Pfu family of DNA polymerases with (exo+) or without (exo-) 3' --> 5' exonucleolytic activity. The diastereomerically pure PS-labeled primers used in these studies were obtained either by the stereospecific chemical synthesis invented in our laboratory or by the more conventional ion-exchange chromatographic method for separation of a mixture of diastereomers (R(P) and S(P)). When the SBE reaction was performed in the presence of mispaired 2'-deoxyribonucleoside triphosphates (dNTPs), the "racemic" 3'-phosphorothioate primer mixture resulted in a lower level of 3' --> 5' exonuclease-mediated cleavage products in comparison to the SBE reactions carried out with the corresponding unmodified primer. When the diastereomerically pure RP 3'-phosphorothioate primer was examined, the results were largely the same as for the racemic 3'-phosphorothioate primer mixture. In contrast, a 3'-PS primer of S(P) configuration displayed significantly improved performance in the SBE reaction. This included the lack of 3' --> 5' proofreading products, less mispriming, and improved yield of incorporation of the correct nucleotide.


Subject(s)
DNA Primers/chemistry , DNA Primers/metabolism , DNA-Directed DNA Polymerase/metabolism , Phosphorothioate Oligonucleotides/chemistry , Phosphorothioate Oligonucleotides/metabolism , Polymerase Chain Reaction/methods , Chromatography, High Pressure Liquid , DNA Primers/genetics , Molecular Structure , Phosphorothioate Oligonucleotides/genetics , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...