Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Somatosens Mot Res ; : 1-16, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906183

ABSTRACT

AIMS: Application of muscle-tendon vibration within the frequency range of 70-120Hz has been studied as a tool to stimulate somatosensory afferents with both the goal of studying human sensorimotor control and of improving post-stroke motor performance. Specific to applications for rehabilitation, current evidence is mixed as to whether dual muscle-tendon vibration is detrimental to the performance of goal-directed upper-limb movements. The current study aimed to determine the effects of muscle-tendon vibration over the wrist flexors and extensors (dual vibration) on performance of a computer goal-directed aiming task. METHODS: Twenty healthy participants were assigned to the vibration or control group. An aiming task that involved acquiring targets by moving an unseen cursor on a screen was performed. Vision of the cursor and hand were unavailable throughout the four blocks of movement execution. Only the vibration group received dual vibration throughout four blocks. Task performance was assessed using measures of endpoint accuracy and timing. Perceived hand location was assessed using a set of questions and a computerised conscious perception task. RESULTS: The vibration group had significantly shorter reaction times, without any change in endpoint accuracy, indicating more efficient and effective movement planning. The vibration group did report illusory movement sensation, which was reduced by block 4. CONCLUSIONS: Dual vibration did not adversely affect aiming accuracy and showed some improvement in reaction time. The present findings support the potential for using dual vibration to stimulate the somatosensory system as participants improved their performance of a novel goal-directed movement. Notably, improvements were maintained when the vibration was removed.

3.
Appl Physiol Nutr Metab ; 47(2): 195-205, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34582724

ABSTRACT

Cold stress impairs fine and gross motor movements. Although peripheral effects of muscle cooling on performance are well understood, less is known about central mechanisms. This study characterized corticospinal and spinal excitability during surface cooling, reducing skin (Tsk) and esophageal (Tes) temperatures. Ten subjects (3 females) wore a liquid-perfused suit and were cooled (9 °C perfusate, 90 min) and rewarmed (41 °C perfusate, 30 min). Transcranial magnetic stimulation (eliciting motor evoked potentials [MEPs]), as well as transmastoid (eliciting cervicomedullary evoked potentials [CMEPs]) and brachial plexus (eliciting maximal compound motor action potentials [Mmax]) electrical stimulation, were applied at baseline, every 20 min during cooling, and following rewarming. Sixty minutes of cooling reduced Tsk by 9.6 °C (P < 0.001), but Tes remained unchanged (P = 0.92). Tes then decreased by ∼0.6 °C in the next 30 min of cooling (P < 0.001). Eight subjects shivered. During rewarming, shivering was abolished, and Tsk returned to baseline, while Tes did not increase. During cooling and rewarming, Mmax, MEP, and MEP/Mmax remained unchanged from baseline. However, CMEP and CMEP/Mmax increased during cooling by ∼85% and 79% (P < 0.001), respectively, and remained elevated post-rewarming. The results suggest that spinal excitability is facilitated by reduced Tsk during cooling and reduced Tes during warming, while corticospinal excitability remains unchanged. ClinicalTrials.gov ID: NCT04253730. Novelty: This is the first study to characterize corticospinal and spinal excitability during whole-body cooling and rewarming in humans. Whole body cooling did not affect corticospinal excitability. Spinal excitability was facilitated during reductions in both skin and core temperatures.


Subject(s)
Body Temperature/physiology , Cryotherapy , Evoked Potentials, Motor/physiology , Skin Temperature/physiology , Adult , Elbow/physiology , Electric Stimulation , Electromyography , Esophagus/physiology , Female , Humans , Male , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Rewarming , Spine/physiology , Transcranial Magnetic Stimulation
5.
Int J Neurosci ; 129(11): 1066-1075, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31220973

ABSTRACT

Aim: The present study describes the training effects of a novel motorized bicycle-like device for individuals with incomplete spinal cord injury. Methods: Participants were five individuals with motor incomplete spinal cord injury (56 ± 7 years). Four of five participants received two 30-min sessions of training: one with, and one without, mechanical stimulation on the plantar surface of the foot; soleus paired H-reflex depression was examined before and after each session. Three of five participants received 24 sessions of 30-min of training (long-training). Following the long-training, balance, walking and spasticity improvements were assessed using validated clinical outcome measures, in addition to the H-reflex assessment. Results: One cycling session with mechanical stimulation yielded 14% and 32% more reflex depression in participants with moderate spasticity (n = 2/4). The same trend was not observed in non-spastic participants (n = 2/4). All participants who participated in the long-training had spasticity and showed reduced spasticity, improved walking speed, endurance and balance. Conclusions: Overall, participants with spasticity showed increased soleus H-reflex suppression after one training session with mechanical stimulation and reduced spasticity scores after long training. We interpret this as evidence that the training influenced both presynaptic and postsynaptic inhibitory mechanisms acting on soleus motoneurons. Therefore, this training has the potential to be a non-invasive complementary therapy to reduce spasticity after incomplete spinal cord injury.


Subject(s)
Exercise Therapy/instrumentation , Muscle Spasticity/rehabilitation , Muscle, Skeletal , Neurological Rehabilitation , Outcome Assessment, Health Care , Paralysis/rehabilitation , Spinal Cord Injuries/rehabilitation , Aged , Bicycling , Equipment Design , Exercise Therapy/methods , Female , H-Reflex/physiology , Humans , Male , Middle Aged , Muscle Spasticity/etiology , Neurological Rehabilitation/instrumentation , Neurological Rehabilitation/methods , Paralysis/etiology , Physical Stimulation , Proof of Concept Study , Spinal Cord Injuries/complications
6.
J Neurosci ; 38(45): 9741-9753, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30249797

ABSTRACT

In the motor system, force gradation is achieved by recruitment of motoneurons and rate modulation of their firing frequency. Classical experiments investigating the relationship between injected current to the soma during intracellular recording and the firing frequency (the I-f relation) in cat spinal motoneurons identified two clear ranges: a primary range and a secondary range. Recent work in mice, however, has identified an additional range proposed to be exclusive to rodents, the subprimary range (SPR), due to the presence of mixed mode oscillations of the membrane potential. Surprisingly, fully summated tetanic contractions occurred in mice during SPR frequencies. With the mouse now one of the most popular models to investigate motor control, it is crucial that such discrepancies between observations in mice and basic principles that have been widely accepted in larger animals are resolved. To do this, we have reinvestigated the I-f relation using ramp current injections in spinal motoneurons in both barbiturate-anesthetized and decerebrate (nonanesthetized) cats and mice. We demonstrate the presence of the SPR and mixed mode oscillations in both species and show that the SPR is enhanced by barbiturate anesthetics. Our measurements of the I-f relation in both cats and mice support the classical opinion that firing frequencies in the higher end of the primary range are necessary to obtain a full summation. By systematically varying the leg oil pool temperature (from 37°C to room temperature), we found that only at lower temperatures can maximal summation occur at SPR frequencies due to prolongation of individual muscle twitches.SIGNIFICANCE STATEMENT This work investigates recent revelations that mouse motoneurons behave in a fundamentally different way from motoneurons of larger animals with respect to the importance of rate modulation of motoneuron firing for force gradation. The current study systematically addresses the proposed discrepancies between mice and larger species (cats) and demonstrates that mouse motoneurons, in fact, use rate modulation as a mechanism of force modulation in a similar manner to the classical descriptions in larger animals.


Subject(s)
Motor Neurons/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Spinal Cord/physiology , Animals , Cats , Electric Stimulation/methods , Female , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/innervation , Species Specificity , Spinal Cord/cytology
7.
J Neurosci Methods ; 288: 99-105, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28648715

ABSTRACT

BACKGROUND: Genetic techniques rendering murine models a popular choice for neuroscience research has led to important insights on neural networks controlling locomotor function. Using genetically altered mouse models for in vivo, electrophysiological studies in the adult state could validate key principles of locomotor network organization that have been described in neonatal, in vitro preparations. NEW METHOD: The experimental model presented here describes a decerebrate, in vivo adult mouse preparation in which focal, electrical midbrain stimulation was combined with monitoring lumbar neural activity and motor output after pre-collicular decerebration and neuromuscular blockade. RESULTS: Lumbar cord dorsum potentials (in 9/10 animals) and motoneuron output (in 3/5 animals) including fictive locomotion, was achieved by focal midbrain stimulation. The stimulation electrode locations could be reconstructed (in 6/7 animals) thereby allowing anatomical identification of the stimulated supraspinal regions. COMPARISON WITH EXISTING METHODS: This preparation allows for concomitant recording or stimulation in the spinal cord and in the mid/hindbrain of adult mice. It differs from other methods used in the past with adult mice as it does not require pharmacological manipulation of neural excitability in order to generate motor output. CONCLUSIONS: Midbrain stimulation can consistently be used for inducing lumbar neural activity in adult mice under neuromuscular blockade. This model is suited for examination of brain-spinal connectivity and it may benefit a wide range of fields depending on the features of the genetically modified mouse models used in combination with the presented methods.


Subject(s)
Decerebrate State/physiopathology , Evoked Potentials/physiology , Mesencephalon/physiopathology , Motor Neurons/physiology , Neural Pathways/physiopathology , Spinal Cord/physiopathology , Animals , Electric Stimulation , Lumbosacral Region , Mice , Motor Activity/physiology
8.
J Physiol ; 595(1): 301-320, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27393215

ABSTRACT

KEY POINTS: Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. ABSTRACT: Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT7 ) receptor agonists and antagonists and 5-HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR-evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5-HT neurons, leading to excitation of central pattern generator neurons with 5-HT7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5-HT7 receptor-mediated control of sensory pathways during development.


Subject(s)
Locomotion/physiology , Receptors, Serotonin/physiology , Serotonin/physiology , Animals , Electric Stimulation , Female , Hindlimb/physiology , Locomotion/drug effects , Motor Neurons/drug effects , Motor Neurons/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Phenols/pharmacology , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Serotonin/genetics , Reflex/drug effects , Reflex/physiology , Serotonin Antagonists/pharmacology , Spinal Cord/drug effects , Spinal Cord/physiology , Sulfonamides/pharmacology
9.
Article in English | MEDLINE | ID: mdl-25713515

ABSTRACT

In this study we investigated how the networks mediating respiratory and locomotor drives to lumbar motoneurons interact and how this interaction is modulated in relation to periodic variations in blood pressure (Mayer waves). Seven decerebrate cats, under neuromuscular blockade, were used to study central respiratory drive potentials (CRDPs, usually enhanced by added CO2) and spontaneously occurring locomotor drive potentials (LDPs) in hindlimb motoneurons, together with hindlimb and phrenic nerve discharges. In four of the cats both drives and their voltage-dependent amplification were absent or modest, but in the other three, one or other of these drives was common and the voltage-dependent amplification was frequently strong. Moreover, in these three cats the blood pressure showed marked periodic variation (Mayer waves), with a slow rate (periods 9-104 s, mean 39 ± 17 SD). Profound modulation, synchronized with the Mayer waves was seen in the occurrence and/or in the amplification of the CRDPs or LDPs. In one animal, where CRDPs were present in most cells and the amplification was strong, the CRDP consistently triggered sustained plateaux at one phase of the Mayer wave cycle. In the other two animals, LDPs were common, and the occurrence of the locomotor drive was gated by the Mayer wave cycle, sometimes in alternation with the respiratory drive. Other interactions between the two drives involved respiration providing leading events, including co-activation of flexors and extensors during post-inspiration or a locomotor drive gated or sometimes entrained by respiration. We conclude that the respiratory drive in hindlimb motoneurons is transmitted via elements of the locomotor central pattern generator. The rapid modulation related to Mayer waves suggests the existence of a more direct and specific descending modulatory control than has previously been demonstrated.


Subject(s)
Blood Pressure/physiology , Motor Activity/physiology , Motor Neurons/physiology , Neural Pathways/physiology , Respiration , Animals , Cats , Decerebrate State , Electrophysiology , Hindlimb/innervation
10.
J Physiol ; 591(22): 5433-43, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23613538

ABSTRACT

The main objective of this review is to re-examine the type of information transmitted by the dorsal and ventral spinocerebellar tracts (DSCT and VSCT respectively) during rhythmic motor actions such as locomotion. Based on experiments in the 1960s and 1970s, the DSCT was viewed as a relay of peripheral sensory input to the cerebellum in general, and during rhythmic movements such as locomotion and scratch. In contrast, the VSCT was seen as conveying a copy of the output of spinal neuronal circuitry, including those circuits generating rhythmic motor activity (the spinal central pattern generator, CPG). Emerging anatomical and electrophysiological information on the putative subpopulations of DSCT and VSCT neurons suggest differentiated functions for some of the subpopulations. Multiple lines of evidence support the notion that sensory input is not the only source driving DSCT neurons and, overall, there is a greater similarity between DSCT and VSCT activity than previously acknowledged. Indeed the majority of DSCT cells can be driven by spinal CPGs for locomotion and scratch without phasic sensory input. It thus seems natural to propose the possibility that CPG input to some of these neurons may contribute to distinguishing sensory inputs that are a consequence of the active locomotion from those resulting from perturbations in the external world.


Subject(s)
Cerebellum/physiology , Locomotion/physiology , Motor Activity/physiology , Movement/physiology , Spinal Cord/physiology , Spinocerebellar Tracts/physiology , Animals , Humans , Neurons/physiology
11.
J Neurophysiol ; 109(2): 375-88, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23100134

ABSTRACT

Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay the activity of hindlimb afferents during locomotion, but lack input from the spinal central pattern generator. The ventral spinocerebellar tract (VSCT) neurons, on the other hand, were found to be active during actual locomotion (on a treadmill) even after deafferentation, as well as during fictive locomotion (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb nerves. Spinocerebellar tract cells with cell bodies located in the lumbar segments were identified by electrophysiological techniques and examined by extra- and intracellular microelectrode recordings. During fictive locomotion, 57/81 DSCT and 30/30 VSCT neurons showed phasic, cycle-related activity. During fictive scratch, 19/29 DSCT neurons showed activity related to the scratch cycle. We provide evidence for the first time that locomotor and scratch drive potentials are present not only in VSCT, but also in the majority of DSCT neurons. These results demonstrate that both spinocerebellar tracts receive input from the central pattern generator circuitry, often sufficient to elicit firing in the absence of sensory input.


Subject(s)
Action Potentials , Locomotion/physiology , Neurons, Afferent/physiology , Spinocerebellar Tracts/physiology , Animals , Cats , Decerebrate State , Hindlimb/innervation
12.
J Physiol ; 589(Pt 1): 119-34, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21059756

ABSTRACT

Despite decades of research, the classical idea that 'reciprocal inhibition' is involved in the hyperpolarisation of motoneurones in their inactive phase during rhythmic activity is still under debate. Here, we investigated the contribution of reciprocal Ia inhibition to the hyperpolarisation of motoneurones during fictive locomotion (evoked either by electrical stimulation of the brainstem or by l-DOPA administration following a spinal transection at the cervical level) and fictive scratching (evoked by stimulation of the pinna) in decerebrate cats. Simultaneous extracellular recordings of Ia inhibitory interneurones and intracellular recordings of lumbar motoneurones revealed the interneurones to be most active when their target motoneurones were hyperpolarised (i.e. in the inactive phase of the target motoneurones). To date, these results are the most direct evidence that Ia inhibitory interneurones contribute to the hyperpolarisation of motoneurones during rhythmic behaviours. We also estimated the amount of Ia inhibition as the amplitude of Ia IPSC in voltage-clamp mode. In both flexor and extensor motoneurones, Ia IPSCs were always larger in the inactive phase than in the active phase during locomotion (n = 14) and during scratch (n = 11). Results obtained from spinalised animals demonstrate that the spinal rhythm-generating network simultaneously drives the motoneurones of one muscle group and the Ia interneurones projecting to motoneurones of the antagonist muscles in parallel. Our results thus support the classical view of reciprocal inhibition as a basis for relaxation of antagonist muscles during flexion-extension movements.


Subject(s)
Interneurons/physiology , Locomotion , Motor Neurons/physiology , Motor Skills , Muscle, Skeletal/innervation , Neural Inhibition , Animals , Cats , Decerebrate State , Electric Stimulation , Evoked Potentials, Motor , Female , Inhibitory Postsynaptic Potentials , Interneurons/drug effects , Levodopa/administration & dosage , Male , Membrane Potentials , Motor Neurons/drug effects , Muscle Contraction , Muscle Relaxation , Neural Inhibition/drug effects , Patch-Clamp Techniques , Periodicity , Time Factors
13.
Eur J Neurosci ; 26(5): 1205-12, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17767499

ABSTRACT

Noradrenaline and serotonin have previously been demonstrated to facilitate the transmission between descending reticulospinal tracts fibres and commissural interneurons coordinating left-right hindlimb muscle activity. The aim of the present study was to investigate the contribution of subclasses of monoaminergic membrane receptors to this facilitation. The neurons were located in Rexed lamina VIII in midlumbar segments and identified by their projections to the contralateral gastrocnemius-soleus motor nuclei and by lack of projections rostral to the lumbosacral enlargement. The effects of ionophoretically applied membrane receptor agonists [phenylephrine (noradrenergic alpha(1)), clonidine (noradrenergic alpha(2)), 8-OH-DPAT (5-HT(1A), 5-HT(7)), 2-me-5-HT (5-HT(3)), 5-me-5-HT (5-HT(2)) and alpha-me-5-HT (5-HT(2))] were examined on extracellularly recorded spikes evoked monosynaptically by electric stimulation of descending reticulospinal fibres in the medial longitudinal fascicle. Application of alpha(1) and 5-HT(2) agonists resulted in a facilitation of responses in all investigated neurons while application of alpha(2), 5-HT(1A/7) and 5-HT(3) agonists resulted in a depression. These opposite modulatory effects of different agonists suggest that the facilitatory actions of noradrenaline and serotonin on responses of commissural interneurons reported previously following ionophoretic application are the net outcome of the activation of different subclasses of monoaminergic membrane receptors. As these receptors may be distributed predominantly, or even selectively, at either pre- or postsynaptic sites their differential modulatory actions could be compatible with a presynaptically induced depression and a postsynaptically evoked enhancement of synaptic transmission between reticulospinal neurons and commissural interneurons.


Subject(s)
Interneurons/drug effects , Interneurons/physiology , Neural Inhibition/physiology , Receptors, Biogenic Amine/agonists , Reticular Formation/physiology , Spinal Cord/cytology , Action Potentials/drug effects , Action Potentials/physiology , Action Potentials/radiation effects , Adrenergic alpha-Agonists/pharmacology , Animals , Cats , Efferent Pathways/physiology , Electric Stimulation/methods , Female , Functional Laterality , Interneurons/radiation effects , Iontophoresis/methods , Male , Neural Inhibition/drug effects , Neural Inhibition/radiation effects , Receptors, Biogenic Amine/physiology , Serotonin Receptor Agonists/pharmacology , Time Factors
14.
J Physiol ; 577(Pt 2): 641-58, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17008375

ABSTRACT

A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-centre rhythm generator (RG) and pattern formation (PF) networks has been developed from observations obtained during fictive locomotion in decerebrate cats. Sensory afferents have been incorporated in the model to study the effects of afferent stimulation on locomotor phase switching and step cycle period and on the firing patterns of flexor and extensor motoneurones. Here we show that this CPG structure can be integrated with reflex circuits to reproduce the reorganization of group I reflex pathways occurring during locomotion. During the extensor phase of fictive locomotion, activation of extensor muscle group I afferents increases extensor motoneurone activity and prolongs the extensor phase. This extensor phase prolongation may occur with or without a resetting of the locomotor cycle, which (according to the model) depends on the degree to which sensory input affects the RG and PF circuits, respectively. The same stimulation delivered during flexion produces a temporary resetting to extension without changing the timing of following locomotor cycles. The model reproduces this behaviour by suggesting that this sensory input influences the PF network without affecting the RG. The model also suggests that the different effects of flexor muscle nerve afferent stimulation observed experimentally (phase prolongation versus resetting) result from opposing influences of flexor group I and II afferents on the PF and RG circuits controlling the activity of flexor and extensor motoneurones. The results of modelling provide insights into proprioceptive control of locomotion.


Subject(s)
Afferent Pathways/physiology , Locomotion , Models, Neurological , Motor Neurons/physiology , Periodicity , Proprioception , Spinal Cord/physiology , Action Potentials , Animals , Cats , Computer Simulation , Decerebrate State , Muscle, Skeletal/innervation , Neural Conduction , Neural Inhibition , Reflex/physiology , Synaptic Transmission , Time Factors
15.
J Physiol ; 569(Pt 1): 275-90, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16141269

ABSTRACT

Reflex actions of muscle afferents in hindlimb flexor nerves were examined on ipsilateral motoneurone activity recorded in peripheral nerves during midbrain stimulation-evoked fictive locomotion and during fictive scratch in decerebrate cats. Trains of stimuli (15-30 shocks at 200 Hz) were delivered during the flexion phase at intensities sufficient to activate both group I and II afferents (5 times threshold, T). In many preparations tibialis anterior (TA) nerve stimulation terminated ongoing flexion and reset the locomotor cycle to extension (19/31 experiments) while extensor digitorum longus (EDL) stimulation increased and prolonged the ongoing flexor phase activity (20/33 preparations). The effects of sartorius, iliopsoas and peroneus longus muscle afferent stimulation were qualitatively similar to those of EDL nerve. Resetting to extension was seen only with higher intensity stimulation (5T) while ongoing flexor activity was often enhanced at group I intensity (2T) stimulation. The effects of flexor nerve stimulation were qualitatively similar during fictive scratch. Reflex reversals were consistently observed in some fictive locomotor preparations. In those cases, EDL stimulation produced a resetting to extension and TA stimulation prolonged the ongoing flexion phase. Occasionally reflex reversals occurred spontaneously during only one of several stimulus presentations. The variable and opposite actions of flexor afferents on the locomotor step cycle indicate the existence of parallel spinal reflex pathways. A hypothetical organization of reflex pathways from flexor muscle afferents to the spinal pattern generator networks with competing actions of group I and group II afferents on the flexor and extensor portions of this central circuitry is proposed.


Subject(s)
Afferent Pathways/physiology , Behavior, Animal/physiology , Locomotion/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Postural Balance/physiology , Reflex, Stretch/physiology , Adaptation, Physiological/physiology , Animals , Biological Clocks/physiology , Cats , Decerebrate State/physiopathology , Evoked Potentials, Motor/physiology , Hindlimb/physiology
16.
J Neurophysiol ; 94(3): 2053-62, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15917324

ABSTRACT

In cat and humans, contact between an obstacle and the dorsum of the foot evokes the stumbling corrective reaction (reflex) that lifts the foot to avoid falling. This reflex can also be evoked by short trains of stimuli to the cutaneous superficial peroneal (SP) nerve in decerebrate cats during the flexion phase of fictive locomotion. Here we examine intracellular events in hindlimb motoneurons accompanying stumbling correction. SP stimulation delivered during the flexion phase excites knee flexor motoneurons at short latency [minimum excitatory postsynaptic potential (EPSP) latency 1.8 ms; mean 2.7 ms]. Although a similar short latency excitation occurs in ankle extensors (mean latency, 2.8 ms), recruitment is delayed until successive shocks in the stimulus train overcome the locomotor-related hyperpolarization of ankle extensors. In ankle flexor motoneurons, SP stimulation evokes an inhibition (mean latency, 2.7 ms) that briefly reduces or stops their firing during the flexion phase. There is a phase-dependent modulation of SP-evoked EPSP amplitude as well as latency during locomotion. However, the more obvious change in SP reflex pathways with the onset of fictive locomotion is the reduced inhibition of ankle extensor motoneurons and the increased inhibition of ankle flexors. These results show that the characteristic pattern of hindlimb motoneuron activation during SP nerve-evoked stumbling correction results from 1) di- and trisynaptic excitation of knee flexor and ankle extensor motoneurons; 2) increased inhibitory postsynaptic potentials in ankle flexors and a suppression of inhibition in extensors, 3) sculpting of the short-latency SP postsynaptic effects by motoneuron membrane potential, and 4) longer latency excitatory effects that are likely evoked by lumbar interneurons involved in the generation of fictive locomotion.


Subject(s)
Hindlimb/innervation , Locomotion/physiology , Motor Neurons/physiology , Neural Pathways/physiology , Reflex/physiology , Animals , Cats , Decerebrate State/physiopathology , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Electromyography/methods , Excitatory Postsynaptic Potentials , Functional Laterality , Locomotion/radiation effects , Models, Biological , Neural Inhibition/physiology , Neural Inhibition/radiation effects , Neural Pathways/radiation effects , Peroneal Nerve/physiopathology , Peroneal Nerve/radiation effects , Reaction Time/physiology , Time Factors
17.
J Neurophysiol ; 94(3): 2045-52, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15917325

ABSTRACT

An obstacle contacting the dorsal surface of a cat's hind foot during the swing phase of locomotion evokes a reflex (the stumbling corrective reaction) that lifts the foot and extends the ankle to avoid falling. We show that the same sequence of ipsilateral hindlimb motoneuron activity can be evoked in decerebrate cats during fictive locomotion. As recorded in the peripheral nerves, twice threshold intensity stimulation of the cutaneous superficial peroneal (SP) nerve during the flexion phase produced a very brief excitation of ankle flexors (e.g., tibialis anterior and peroneus longus) that was followed by an inhibition for the duration of the stimulus train (10-25 shocks, 200 Hz). Extensor digitorum longus was always, and hip flexor (sartorius) activity was sometimes, inhibited during SP stimulation. At the same time, knee flexor and the normally quiescent ankle extensor motoneurons were recruited (mean latencies 4 and 16 ms) with SP stimulation during fictive stumbling correction. After the stimulus train, ankle extensor activity fell silent, and there was an excitation of hip, knee, and ankle flexors. The ongoing flexion phase was often prolonged. Hip extensors were also recruited in some fictive stumbling trials. Only the SP nerve was effective in evoking stumbling correction. Delivered during extension, SP stimulus trains increased ongoing extensor motoneuron activity as well as increasing ipsilateral hip, knee, and ankle hindlimb flexor activity in the subsequent step cycle. The fictive stumbling corrective reflex seems functionally similar to that evoked in intact, awake animals and involves a fixed pattern of short-latency reflexes as well as actions evoked through the lumbar circuitry responsible for the generation of rhythmic alternating locomotion.


Subject(s)
Functional Laterality/physiology , Locomotion/physiology , Lower Extremity/innervation , Lower Extremity/physiology , Motor Neurons/physiology , Reflex/physiology , Animals , Cats , Decerebrate State/physiopathology , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Electromyography/methods , Locomotion/radiation effects , Motor Neurons/radiation effects , Neural Inhibition/physiology , Neural Inhibition/radiation effects , Peroneal Nerve/physiology , Peroneal Nerve/radiation effects , Reaction Time/physiology , Reaction Time/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...