Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 38(5): 825-834, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38595263

ABSTRACT

ABSTRACT: Johansson, DG, Marchetti, PH, Stecyk, SD, and Flanagan, SP. A biomechanical comparison between the safety-squat bar and traditional barbell back squat. J Strength Cond Res 38(5): 825-834, 2024-The primary objectives for this investigation were to compare the kinematic and kinetic differences between performing a parallel back squat using a traditional barbell (TB) or a safety-squat bar (SSB). Fifteen healthy, recreationally trained male subjects (23 + 4 years of age) performed the back squat with a TB and an SSB at 85% of their respective 1 repetition maximum with each barbell while instrumented for biomechanical analysis. Standard inverse dynamics techniques were used to determine joint kinematic and kinetic measures. A 2 × 3 (exercise × joint) factorial analysis of variance with repeated measures was used to determine the kinetic and kinematic differences between the squats while using the different barbells. Fisher's least significant difference post hoc comparisons showed that the TB resulted in significantly greater maximum hip flexion angle (129.33 ± 11.8° vs. 122.11 ± 12.1°; p < 0.001; d = 1.80), peak hip net joint extensor torque (2.54 ± 0.4 Nm·kg -1 vs. 2.40 ± 0.4 Nm·kg -1 ; p = 0.001; d = 1.10), hip net extensor torque mechanical energy expenditure (MEE; 2.81 ± 0.5 Nm·kg -1 vs. 2.58 ± 0.6 Nm·kg -1 ; p = 0.002; d = 0.97), and ankle net joint plantar flexor torque MEE (0.32 ± 0.09 J·kg -1 vs. 0.28 ± 0.06 J·kg -1 ; p = 0.029; d = 0.63), while also lifting significantly (123.17 ± 20.8 kg vs. 117.17 ± 20.8 kg; p = 0.005; d = 0.858) more weight than the SSB. The SSB resulted in significantly higher maximum knee flexion angles (116.82 ± 5.8° vs. 115.65 ± 5.6°; p = 0.011; d = 0.75) than the TB, with no significant difference in kinetics at the knee. The TB may be preferred to the SSB for developing the hip extensors and lifting higher maximum loads. The SSB may be advantageous in situations where a more upright posture or a lower load is preferred while creating a similar demand for the knee joint.


Subject(s)
Knee Joint , Humans , Male , Biomechanical Phenomena , Young Adult , Adult , Knee Joint/physiology , Hip Joint/physiology , Torque , Weight Lifting/physiology , Muscle, Skeletal/physiology , Ankle Joint/physiology , Resistance Training/methods , Range of Motion, Articular/physiology
2.
J Strength Cond Res ; 35(12): 3322-3326, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-31469769

ABSTRACT

ABSTRACT: Marchetti, PH, Magalhaes, RA, Gomes, WA, da Silva, JJ, Stecyk, SD, and Whiting, WC. Different knee and ankle positions affect force and muscle activation during prone leg curl in trained subjects. J Strength Cond Res 35(12): 3322-3326, 2021-Different joint positions for biarticular muscles may affect force and muscular activity during single-joint exercises. The aim of this study was to compare the maximal isometric contractions and muscle activation in 2 different knee and ankle positions during prone leg curl exercise in trained subjects. Fifteen resistance-trained men (27 ± 4 years, 178.80 ± 5.72 cm, 86.87 ± 12.51 kg) were recruited. The peak force (PF) and muscle activation of biceps femoris, gastrocnemius lateralis (GL), and soleus lateralis (SL) were measured during knee flexion at 0 and 90° and maximal dorsiflexion (D) or plantarflexion (P). Three maximal voluntary isometric contractions of 5 seconds were performed for each combination of knee and ankle positions. Two-way repeated-measures analysis of variances were used for all dependent variables. For PF, there was a significant difference between ankle positions (D × P) at 90° (p = 0.009) and knee positions (0 × 90°) for D (p < 0.001) and P (p < 0.001). Peak force was greater with the knee at 0° and the ankle maximally dorsiflexed. For GL, there was a significant difference between ankle (D × P) at 0° (p = 0.002) and knee positions (0 × 90°) for D (p = 0.005). Gastrocnemius lateralis activation was greater with the knee at 90° of flexion and the ankle maximally dorsiflexed. For SL, there was a significant difference between ankle positions (D × P): at 90° (p = 0.001) and at 0° (p = 0.002). Soleus lateralis is more active in plantarflexion irrespective of the knee joint position. Isometric contractions with full knee extension produce more strength regardless of the ankle position; neither the knee position nor the ankle position may influence the activity of the hamstrings.


Subject(s)
Ankle , Leg , Ankle Joint , Electromyography , Humans , Isometric Contraction , Knee Joint , Male , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL
...