Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Plants ; 10(6): 984-993, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898165

ABSTRACT

Wheat blast, caused by the fungus Magnaporthe oryzae, threatens global cereal production since its emergence in Brazil in 1985 and recently spread to Bangladesh and Zambia. Here we demonstrate that the AVR-Rmg8 effector, common in wheat-infecting isolates, is recognized by the gene Pm4, previously shown to confer resistance to specific races of Blumeria graminis f. sp. tritici, the cause of powdery mildew of wheat. We show that Pm4 alleles differ in their recognition of different AVR-Rmg8 alleles, and some confer resistance only in seedling leaves but not spikes, making it important to select for those alleles that function in both tissues. This study has identified a gene recognizing an important virulence factor present in wheat blast isolates in Bangladesh and Zambia and represents an important first step towards developing durably resistant wheat cultivars for these regions.


Subject(s)
Ascomycota , Disease Resistance , Plant Diseases , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Ascomycota/physiology , Genes, Plant , Alleles , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Nat Commun ; 14(1): 6977, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914713

ABSTRACT

Isoflavones are a group of phenolic compounds mostly restricted to plants of the legume family, where they mediate important interactions with plant-associated microbes, including in defense from pathogens and in nodulation. Their well-studied health promoting attributes have made them a prime target for metabolic engineering, both for bioproduction of isoflavones as high-value molecules, and in biofortification of food crops. A key gene in their biosynthesis, isoflavone synthase, was identified in legumes over two decades ago, but little is known about formation of isoflavones outside of this family. Here we identify a specialized wheat-specific isoflavone synthase, TaCYP71F53, which catalyzes a different reaction from the leguminous isoflavone synthases, thus revealing an alternative path to isoflavonoid biosynthesis and providing a non-transgenic route for engineering isoflavone production in wheat. TaCYP71F53 forms part of a biosynthetic gene cluster that produces a naringenin-derived O-methylated isoflavone, 5-hydroxy-2',4',7-trimethoxyisoflavone, triticein. Pathogen-induced production and in vitro antimicrobial activity of triticein suggest a defense-related role for this molecule in wheat. Genomic and metabolic analyses of wheat ancestral grasses further show that the triticein gene cluster was introduced into domesticated emmer wheat through natural hybridization ~9000 years ago, and encodes a pathogen-responsive metabolic pathway that is conserved in modern bread wheat varieties.


Subject(s)
Fabaceae , Isoflavones , Isoflavones/metabolism , Phytoalexins , Triticum/genetics , Triticum/metabolism , Fabaceae/metabolism , Secondary Metabolism
3.
Nat Plants ; 9(3): 385-392, 2023 03.
Article in English | MEDLINE | ID: mdl-36797350

ABSTRACT

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.


Subject(s)
Magnaporthe , Triticum , Triticum/genetics , Triticum/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Brazil , Bangladesh
4.
Front Plant Sci ; 13: 943211, 2022.
Article in English | MEDLINE | ID: mdl-35874002

ABSTRACT

A diverse panel of wheat wild relative species was screened for resistance to Fusarium head blight (FHB) by spray inoculation. The great majority of species and accessions were susceptible or highly susceptible to FHB. Accessions of Triticum timopheevii (P95-99.1-1), Agropyron desertorum (9439957), and Elymus vaillantianus (531552) were highly resistant to FHB while additional accessions of T. timopheevii were found to be susceptible to FHB. A combination of spray and point inoculation assessments over two consecutive seasons indicated that the resistance in accession P95-99.1-1 was due to enhanced resistance to initial infection of the fungus (type 1 resistance), and not to reduction in spread (type 2 resistance). A panel of wheat-T. timopheevii (accession P95-99.1-1) introgression lines was screened for FHB resistance over two consecutive seasons using spray inoculation. Most introgression lines were similar in susceptibility to FHB as the wheat recipient (Paragon) but substitution of the terminal portion of chromosome 3BS of wheat with a similar-sized portion of 3G of T. timopheevii significantly enhanced FHB resistance in the wheat background.

5.
PLoS One ; 16(3): e0248184, 2021.
Article in English | MEDLINE | ID: mdl-33684152

ABSTRACT

Fusarium head blight (FHB) is a disease of wheat (Triticum aestivum L.) that causes major yield losses in South America, as well as many other wheat growing regions around the world. FHB results in low quality, contaminated grain due to the production of mycotoxins such as deoxynivalenol (DON). In Brazil, FHB outbreaks are increasing in frequency and are currently controlled by fungicides which are costly and potentially harmful to the wider environment. To identify the genetic basis of resistance to FHB in Brazilian wheat, two mapping populations (Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179) segregating for FHB resistance were phenotyped and quantitative trait loci (QTL) analysis was undertaken to identify genomic regions associated with FHB-related traits. A total of 14 QTL associated with FHB visual symptoms were identified, each of which explained 3.7-17.3% of the phenotypic variance. Two of these QTL were stable across environments. This suggests FHB resistance in Anahuac 75, BR 18-Terena and BRS 179 is controlled by multiple genetic loci that confer relatively minor differences in resistance. A major, novel QTL associated with DON accumulation was also identified on chromosome 4B (17.8% of the phenotypic variance), as well as a major QTL associated with thousand-grain weight on chromosome 6B (16.8% phenotypic variance). These QTL could be useful breeding targets, when pyramided with major sources of resistance such as Fhb1, to improve grain quality and reduce the reliance on fungicides in Brazil and other countries affected by FHB.


Subject(s)
Chromosomes, Plant/metabolism , Disease Resistance/genetics , Fusarium , Plant Diseases/genetics , Quantitative Trait Loci , Triticum/genetics , Brazil , Plant Diseases/microbiology , Triticum/microbiology
6.
BMC Plant Biol ; 20(1): 398, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32854622

ABSTRACT

BACKGROUND: Wheat blast, caused by Magnaporthe oryzae Triticum (MoT) pathotype, is a global threat to wheat (Triticum aestivum L.) production. Few blast resistance (R) genes have been identified to date, therefore assessing potential sources of resistance in wheat is important. The Brazilian wheat cultivar BR 18-Terena is considered one of the best sources of resistance to blast and has been widely used in Brazilian breeding programmes, however the underlying genetics of this resistance are unknown. RESULTS: BR 18-Terena was used as the common parent in the development of two recombinant inbred line (RIL) F6 populations with the Brazilian cultivars Anahuac 75 and BRS 179. Populations were phenotyped for resistance at the seedling and heading stage using the sequenced MoT isolate BR32, with transgressive segregation being observed. Genetic maps containing 1779 and 1318 markers, were produced for the Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179 populations, respectively. Five quantitative trait loci (QTL) associated with seedling resistance, on chromosomes 2B, 4B (2 QTL), 5A and 6A, were identified, as were four QTL associated with heading stage resistance (1A, 2B, 4A and 5A). Seedling and heading stage QTL did not co-locate, despite a significant positive correlation between these traits, indicating that resistance at these developmental stages is likely to be controlled by different genes. BR 18-Terena provided the resistant allele for six QTL, at both developmental stages, with the largest phenotypic effect conferred by a QTL being 24.8% suggesting that BR 18-Terena possesses quantitative resistance. Haplotype analysis of 100 Brazilian wheat cultivars indicates that 11.0% of cultivars already possess a BR 18-Terena-like haplotype for more than one of the identified heading stage QTL. CONCLUSIONS: This study suggests that BR 18-Terena possesses quantitative resistance to wheat blast, with nine QTL associated with resistance at either the seedling or heading stage being detected. Wheat blast resistance is also largely tissue-specific. Identification of durable quantitative resistances which can be combined with race-specific R gene-mediated resistance is critical to effectively control wheat blast. Collectively, this work facilitates marker-assisted selection to develop new varieties for cultivation in regions at risk from this emerging disease.


Subject(s)
Ascomycota/physiology , Disease Resistance/genetics , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/genetics , Brazil , Plant Breeding , Plant Diseases/microbiology , Triticum/microbiology
7.
G3 (Bethesda) ; 10(7): 2229-2239, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32350030

ABSTRACT

Bread wheat (Triticum aestivum L.) is one of the world's most important crops. Maintaining wheat yield gains across all of its major production areas is a key target toward underpinning global food security. Brazil is a major wheat producer in South America, generating grain yields of around 6.8 million tons per year. Here, we establish and genotype a wheat association mapping resource relevant to contemporary Brazilian wheat breeding programs. The panel of 558 wheat accessions was genotyped using an Illumina iSelect 90,000 single nucleotide polymorphism array. Following quality control, the final data matrix consisted of 470 accessions and 22,475 polymorphic genetic markers (minor allele frequency ≥5%, missing data <5%). Principal component analysis identified distinct differences between materials bred predominantly for the northern Cerrado region, compared to those bred for southern Brazilian agricultural areas. We augmented the genotypic data with 26 functional Kompetitive Allele-Specific PCR (KASP) markers to identify the allelic combinations at genes with previously known effects on agronomically important traits in the panel. This highlighted breeding targets for immediate consideration - notably, increased Fusarium head blight resistance via the Fhb1 locus. To demonstrate the panel's likely future utility, genome-wide association scans for several phenotypic traits were undertaken. Significant (Bonferroni corrected P < 0.05) marker-trait associations were detected for Fusarium kernel damage (a proxy for type 2 Fusarium resistance), identifying previously known quantitative trait loci in the panel. This association mapping panel represents an important resource for Brazilian wheat breeding, allowing future genetic studies to analyze multiple agronomic traits within a single genetically diverse population.


Subject(s)
Genome-Wide Association Study , Triticum , Brazil , Genotype , Phenotype , Plant Breeding , Plant Diseases , Polymorphism, Single Nucleotide , Triticum/genetics
8.
J Exp Bot ; 71(16): 4703-4714, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32473016

ABSTRACT

Fusarium head blight (FHB) causes significant grain yield and quality reductions in wheat and barley. Most wheat varieties are incapable of preventing FHB spread through the rachis, but disease is typically limited to individually infected spikelets in barley. We point-inoculated wheat lines possessing barley chromosome introgressions to test whether FHB resistance could be observed in a wheat genetic background. The most striking differential was between 4H(4D) substitution and 4H addition lines. The 4H addition line was similarly susceptible to the wheat parent, but the 4H(4D) substitution line was highly resistant, which suggests that there is an FHB susceptibility factor on wheat chromosome 4D. Point inoculation of Chinese Spring 4D ditelosomic lines demonstrated that removing 4DS results in high FHB resistance. We genotyped four Chinese Spring 4DS terminal deletion lines to better characterize the deletions in each line. FHB phenotyping indicated that lines del4DS-2 and del4DS-4, containing smaller deletions, were susceptible and had retained the susceptibility factor. Lines del4DS-3 and del4DS-1 contain larger deletions and were both significantly more resistant, and hence had presumably lost the susceptibility factor. Combining the genotyping and phenotyping results allowed us to refine the susceptibility factor to a 31.7 Mbp interval on 4DS.


Subject(s)
Fusarium , Hordeum , Chromosomes , Plant Diseases/genetics , Triticum/genetics
9.
New Phytol ; 225(1): 340-355, 2020 01.
Article in English | MEDLINE | ID: mdl-31469444

ABSTRACT

Awns, bristle-like structures extending from grass lemmas, provide protection against predators, contribute to photosynthesis and aid in grain dispersal. In wheat, selection of awns with minimal extension, termed awnletted, has occurred during domestication by way of loci that dominantly inhibit awn development, such as Tipped1 (B1), Tipped2 (B2), and Hooded (Hd). Here we identify and characterize the B1 gene. B1 was identified using bulked segregant RNA-sequencing of an F2 durum wheat population and through deletion mapping of awned bread wheat mutants. Functional characterization was accomplished by gene overexpression while haplotype analyses assessed B1 polymorphisms and genetic variation. Located on chromosome 5A, B1 is a C2H2 zinc finger encoding gene with ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. Constitutive overexpression of B1 in awned wheat produced an awnletted phenotype with pleiotropic effects on plant height and fertility. Transcriptome analysis of B1 overexpression plants suggests a role as transcriptional repressor, putatively targeting pathways involved in cell proliferation. Haplotype analysis revealed a conserved B1 coding region with proximal polymorphisms and supported the contention that B1 is mainly responsible for awnletted wheats globally. B1, predominantly responsible for awn inhibition in wheat, encodes a C2H2 zinc finger protein with EAR motifs which putatively functions as a transcriptional repressor.


Subject(s)
Genes, Dominant , Genetic Loci , Plant Proteins/metabolism , Repressor Proteins/metabolism , Triticum/anatomy & histology , Triticum/genetics , Zinc Fingers , Amino Acid Motifs , Bread , Cell Proliferation/genetics , Chromosome Mapping , Chromosome Segregation/genetics , Gene Expression Regulation, Plant , Genetic Pleiotropy , Haplotypes/genetics , Indoleacetic Acids/metabolism , Multigene Family , Mutation/genetics , Open Reading Frames/genetics , Plant Development/genetics , Polymorphism, Genetic
10.
PLoS One ; 14(7): e0219042, 2019.
Article in English | MEDLINE | ID: mdl-31314759

ABSTRACT

Wide crosses between genetically diverged parents may reveal novel loci for crop improvement that are not apparent in crosses between elite cultivars. The landrace Chevallier was a noted malting barley first grown in 1820. To identify potentially novel alleles for agronomic traits, Chevallier was crossed with the modern malting cultivar NFC Tipple generating two genetically diverse recombinant inbred line populations. Genetic maps were produced using genotyping-by-sequencing and 384-SNP genotyping, and the populations were phenotyped for agronomic traits to allow the identification of quantitative trait loci (QTL). Within the semi-dwarf 1 (sdw1) region on chromosome 3H Chevallier conferred increased plant height and reduced tiller number, with QTL for these traits explaining 79.4% and 35.2% of the phenotypic variance observed, respectively. Chevallier was also associated with powdery mildew susceptibility, with a QTL on 1H accounting for up to 19.1% of the variance and resistance at this locus most likely resulting from an Mla variant from Tipple. Two novel QTL for physiological leaf spotting were identified on 3H and 7H, explaining up to 17.1% of the variance and with the Chevallier allele reducing symptom severity on 7H. Preliminary micromalting analysis was also undertaken to compare the malting characteristics of Chevallier and Tipple. Chevallier malt contained significantly lower levels of both α-amylase and wort ß-glucan than Tipple malt, however no significant differences were observed for the remaining malting parameters measured. This suggests that the most obvious improvements in barley since the introduction of Chevallier are for agronomic traits such as height, yield and lodging resistance rather than for malting characteristics. Overall, our results demonstrate that this wide cross between Chevallier and Tipple may provide a source of novel QTL for barley breeding.


Subject(s)
Hordeum/genetics , Alcoholic Beverages , Alleles , Chromosome Mapping , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Crosses, Genetic , Disease Resistance/genetics , Genes, Plant , Genotype , Hordeum/growth & development , Hordeum/physiology , Phenotype , Plant Breeding , Plant Diseases/genetics , Plant Diseases/prevention & control , Polymorphism, Single Nucleotide , Quantitative Trait Loci
11.
Nat Protoc ; 13(12): 2944-2963, 2018 12.
Article in English | MEDLINE | ID: mdl-30446746

ABSTRACT

'Speed breeding' (SB) shortens the breeding cycle and accelerates crop research through rapid generation advancement. SB can be carried out in numerous ways, one of which involves extending the duration of plants' daily exposure to light, combined with early seed harvest, to cycle quickly from seed to seed, thereby reducing the generation times for some long-day (LD) or day-neutral crops. In this protocol, we present glasshouse and growth chamber-based SB approaches with supporting data from experimentation with several crops. We describe the conditions that promote the rapid growth of bread wheat, durum wheat, barley, oat, various Brassica species, chickpea, pea, grass pea, quinoa and Brachypodium distachyon. Points of flexibility within the protocols are highlighted, including how plant density can be increased to efficiently scale up plant numbers for single-seed descent (SSD). In addition, instructions are provided on how to perform SB on a small scale in a benchtop growth cabinet, enabling optimization of parameters at a low cost.


Subject(s)
Avena/growth & development , Brachypodium/growth & development , Brassica/growth & development , Crops, Agricultural/growth & development , Hordeum/growth & development , Plant Breeding/methods , Triticum/growth & development , Plant Breeding/economics , Time Factors
12.
Nat Plants ; 4(1): 23-29, 2018 01.
Article in English | MEDLINE | ID: mdl-29292376

ABSTRACT

The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.


Subject(s)
Brassica napus/genetics , Cicer/genetics , Hordeum/genetics , Pisum sativum/genetics , Triticum/genetics , Crops, Agricultural , Phenotype , Plant Breeding , Research , Time Factors
13.
J Exp Bot ; 66(11): 3417-28, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25873675

ABSTRACT

Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens.


Subject(s)
Ascomycota/physiology , Disease Resistance , Hordeum/immunology , Plant Diseases/immunology , Plant Proteins/metabolism , Alleles , Cell Death , Fusarium/physiology , Hordeum/genetics , Hordeum/microbiology , Hordeum/physiology , Mutation , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Proteins/genetics
14.
Mol Plant Pathol ; 16(2): 201-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25040333

ABSTRACT

NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS.


Subject(s)
Ascomycota/pathogenicity , Hordeum/metabolism , Hordeum/microbiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Droughts , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Transcription Factors/genetics
15.
BMC Plant Biol ; 11: 100, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21639892

ABSTRACT

BACKGROUND: Fusarium species cause Fusarium head blight (FHB) and other important diseases of cereals. The causal agents produce trichothecene mycotoxins such as deoxynivalenol (DON). The dicotyledonous model species Arabidopsis thaliana has been used to study Fusarium-host interactions but it is not ideal for model-to-crop translation. Brachypodium distachyon (Bd) has been proposed as a new monocotyledonous model species for functional genomic studies in grass species. This study aims to assess the interaction between the most prevalent FHB-causing Fusarium species and Bd in order to develop and exploit Bd as a genetic model for FHB and other Fusarium diseases of wheat. RESULTS: The ability of Fusarium graminearum and Fusarium culmorum to infect a range of Bd tissues was examined in various bioassays which showed that both species can infect all Bd tissues examined, including intact foliar tissues. DON accumulated in infected spike tissues at levels similar to those of infected wheat spikes. Histological studies revealed details of infection, colonisation and host response and indicate that hair cells are important sites of infection. Susceptibility to Fusarium and DON was assessed in two Bd ecotypes and revealed variation in resistance between ecotypes. CONCLUSIONS: Bd exhibits characteristics of susceptibility highly similar to those of wheat, including susceptibility to spread of disease in the spikelets. Bd is the first reported plant species to allow successful infection on intact foliar tissues by FHB-causing Fusarium species. DON appears to function as a virulence factor in Bd as it does in wheat. Bd is proposed as a valuable model for undertaking studies of Fusarium head blight and other Fusarium diseases of wheat.


Subject(s)
Brachypodium/microbiology , Fusarium/pathogenicity , Plant Diseases/microbiology , Triticum/microbiology , Brachypodium/drug effects , Brachypodium/immunology , Crops, Agricultural/microbiology , Fusarium/drug effects , Fusarium/immunology , Host-Pathogen Interactions , Hyphae/drug effects , Hyphae/growth & development , Immunity, Innate , Plant Diseases/immunology , Plant Leaves/drug effects , Plant Leaves/microbiology , Plant Roots/microbiology , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Trichothecenes/metabolism , Trichothecenes/pharmacology , Triticum/immunology
16.
Mol Plant Pathol ; 7(5): 391-403, 2006 Sep.
Article in English | MEDLINE | ID: mdl-20507455

ABSTRACT

SUMMARY Fusarium graminearum causes fusarium head blight (FHB) of wheat and other cereals. Resistance of wheat to FHB is incomplete and the defence mechanisms involved are poorly understood owing to the complex genome and long life cycle of the host. A robust and reproducible bioassay system was established for the study of interactions between F. graminearum and Arabidopsis by wound inoculation of detached leaves embedded in agar medium. Amendment of the inoculum with deoxynivalenol enhanced symptom development and conidial production. Colonization of leaf tissue was by both inter- and intracellular growth and extensive cell death was observed ahead of advancing hyphae indicating the presence of phytotoxic compounds or host-initiated programmed cell death. Expression of defence response genes associated with jasmonic acid/ethylene and salicylic acid pathways indicated that both pathways were activated in response to F. graminearum with expression of the jasmonic acid/ethylene pathways being more enhanced than that of the salicylic acid pathway, as expected for a necrotrophic pathogen. A large variation in resistance among Arabidopsis ecotypes was revealed. The ecotype Col-0 was significantly more resistant than Ler using both the detached leaf and a detached flower assay. Foliar resistance was shown to be controlled largely by a single genetic factor on chromosome 4 near the RFLP marker O6455. The detached leaf assay described herein provides a means to enable fundamental studies on the defence mechanisms of Arabidopsis in response to F. graminearum.

SELECTION OF CITATIONS
SEARCH DETAIL
...