Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Food Chem X ; 13: 100243, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35499026

ABSTRACT

The nutritional quality and bioactive potential of breads made with partial replacement of refined wheat flour (RWF) with 30% or 45% refined buckwheat flour (RBF) or whole buckwheat flour (WGBF) was assessed through mineral bioaccessibility, starch digestibility, dietary fiber content and bioactive potential by determining rutin and quercetin levels during processing. Moreover, technological quality and sensory acceptance were also evaluated. Breads made with 30% or 45% WGBF showed higher mineral and fiber contents compared to the control, while the formulations with RBF showed higher bioaccessibility. No changes were observed in the rutin levels of the dough before and after fermentation, but after baking, rutin and quercetin levels increased. The highest starch hydrolysis was found in the formulation containing 45% RBF. The formulations made with 30% RBF or 30% WGBF were well accepted by consumers. Our study shows interesting results, as few studies report the effect of processing on bioactive compounds.

2.
An. acad. bras. ciênc ; 90(1): 283-293, Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-886918

ABSTRACT

ABSTRACT Yellow sweet potato is mostly produced by small farmers, and may be a source of energy and carotenoids in the human diet, but it is a highly perishable crop. To increase its industrial application, yellow sweet potato flour has been produced for use in bakery products. This study aimed to evaluate the technological quality and the carotenoids content in sweet breads produced with the replacement of wheat flour by 0, 3, 6, and 9% yellow sweet potato flour. Breads were characterized by technological parameters and β-carotene levels during nine days of storage. Tukey's test (p<0.05) was used for comparison between means. The increase in yellow sweet potato flour concentrations in bread led to a decrease of specific volume and firmness, and an increase in water activity, moisture, orange coloring, and carotenoids. During storage, the most significant changes were observed after the fifth day, with a decrease in intensity of the orange color. The β-carotene content was 0.1656 to 0.4715 µg/g in breads with yellow sweet potato flour. This work showed a novel use of yellow sweet potato in breads, which brings benefits to consumers' health and for the agricultural business.


Subject(s)
Bread/analysis , beta Carotene/analysis , beta Carotene/chemistry , Ipomoea batatas/chemistry , Flour/analysis , Food Handling/methods , Reference Values , Rheology , Time Factors , Food Quality , Reproducibility of Results , Color , Food Ingredients/analysis , Nutritive Value
3.
An Acad Bras Cienc ; 90(1): 283-293, 2018.
Article in English | MEDLINE | ID: mdl-29424387

ABSTRACT

Yellow sweet potato is mostly produced by small farmers, and may be a source of energy and carotenoids in the human diet, but it is a highly perishable crop. To increase its industrial application, yellow sweet potato flour has been produced for use in bakery products. This study aimed to evaluate the technological quality and the carotenoids content in sweet breads produced with the replacement of wheat flour by 0, 3, 6, and 9% yellow sweet potato flour. Breads were characterized by technological parameters and ß-carotene levels during nine days of storage. Tukey's test (p<0.05) was used for comparison between means. The increase in yellow sweet potato flour concentrations in bread led to a decrease of specific volume and firmness, and an increase in water activity, moisture, orange coloring, and carotenoids. During storage, the most significant changes were observed after the fifth day, with a decrease in intensity of the orange color. The ß-carotene content was 0.1656 to 0.4715 µg/g in breads with yellow sweet potato flour. This work showed a novel use of yellow sweet potato in breads, which brings benefits to consumers' health and for the agricultural business.


Subject(s)
Bread/analysis , Flour/analysis , Food Handling/methods , Ipomoea batatas/chemistry , beta Carotene/analysis , beta Carotene/chemistry , Color , Food Ingredients/analysis , Food Quality , Nutritive Value , Reference Values , Reproducibility of Results , Rheology , Time Factors
4.
Food Res Int ; 76(Pt 3): 402-409, 2015 Oct.
Article in English | MEDLINE | ID: mdl-28455020

ABSTRACT

This study aimed to verify the potential of extruded wheat flour (EWF) or pre-gelatinized cassava starch (PGS) to improve the process and the quality of French bread elaborated from frozen dough. Three formulations were prepared: 100% control wheat flour (CWF) and the other two formulations with 5% substitution of wheat flour by EWF or PGS. Frozen doughs were frozen stored for seven days and after this period they were thawed, fermented, baked and evaluated for physical, chemical and technological characteristics. Available glucose levels found for EWF (12g/100g), and PGS (11.7g/100g) in relation to CWF (7.1g/100g) showed higher sugar availability for yeasts at the initial stage of proofing, and may also have had a cryoprotective effect when freezing bread doughs. The frozen doughs with EWF or PGS, when thawed and fermented, presented higher volume increase, but after baking, they presented lower volume when compared to the control bread. The results of this study are promising for the use of extruded wheat flour or pre-gelatinized cassava starch as sugar providers for doughs' post-freezing proofing process, improving frozen dough process of French-type bread.

SELECTION OF CITATIONS
SEARCH DETAIL
...