Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 7: e6646, 2019.
Article in English | MEDLINE | ID: mdl-30972249

ABSTRACT

Teleosauroids were a successful group of semi-aquatic crocodylomorphs that were an integral part of coastal marine/lagoonal faunas during the Jurassic. Their fossil record suggests that the group declined in diversity and abundance in deep water deposits during the Late Jurassic. One of the few known teleosauroid species from the deeper water horizons of the well-known Kimmeridge Clay Formation is 'Teleosaurus' megarhinus Hulke, 1871, a poorly studied, gracile longirostrine form. The holotype is an incomplete snout from the Aulacostephanus autissiodorensis Sub-Boreal ammonite Zone of Kimmeridge, England. The only other referred specimen is an almost complete skull from the slightly older A. eudoxus Sub-Boreal ammonite Zone of Quercy, France. Recently, the validity of this species has been called into question. Here we re-describe the holotype as well as the referred French specimen and another incomplete teleosauroid, DORCM G.05067i-v (an anterior rostrum with three osteoderms and an isolated tooth crown), from the same horizon and locality as the holotype. We demonstrate that all specimens are referable to 'Teleosaurus' megarhinus and that the species is indeed a valid taxon, which we assign to a new monotypic genus, Bathysuchus. In our phylogenetic analysis, the latest iteration of the ongoing Crocodylomorph SuperMatrix Project, Bathysuchus megarhinus is found as sister taxon to Aeolodon priscus within a subclade containing Mycterosuchus nasutus and Teleosaurus cadomensis. Notably Bathysuchus has an extreme reduction in dermatocranial ornamentation and osteoderm size, thickness and ornamentation. These features are mirrored in Aeolodon priscus, a species with a well-preserved post-cranial skeleton and a similar shallow and inconspicuous dermal ornamentation. Based on these morphological features, and sedimentological evidence, we hypothesise that the Bathysuchus + Aeolodon clade is the first known teleosauroid lineage that evolved a more pelagic lifestyle.

2.
Anat Rec (Hoboken) ; 299(11): 1511-1530, 2016 11.
Article in English | MEDLINE | ID: mdl-27532628

ABSTRACT

Modern crocodylians are a morphologically conservative group, but extinct relatives (crocodylomorphs) experimented with a wide range of diets, behaviors, and body sizes. Among the most unusual of these fossil groups is the thalattosuchians, an assemblage of marine-dwellers that transitioned from semiaquatic species (teleosaurids and kin) into purely open-ocean forms (metriorhynchids) during the Jurassic and Cretaceous Periods (ca 191-125 million years ago). Thalattosuchians can give insight into the origin of modern crocodylian morphologies and how anatomy and behavior change during a major evolutionary transition into a new habitat. Little is known, however, about their brains, sensory systems, cranial sinuses, and vasculature. We here describe the endocranial anatomy of a well-preserved specimen of the Jurassic semiaquatic teleosaurid Steneosaurus cf. gracilirostris using X-ray micro-CT. We find that this teleosaurid still had an ear well attuned to hear on land, but had developed large internal carotid and orbital arteries that likely supplied salt glands, previously thought to be present in only the fully pelagic metriorhynchids. There is no great gulf in endocranial anatomy between this teleosaurid and the metriorhynchids, and some of the features that later permitted metriorhynchids to invade the oceanic realm were apparently first developed in semiaquatic taxa. Compared to modern crocodylians, Steneosaurus cf. gracilirostris has a more limited set of pharyngotympanic sinuses, but it is unclear whether this relates to its aquatic habitat or represents the primitive condition of crocodylomorphs that was later elaborated. Anat Rec, 299:1511-1530, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Biological Evolution , Brain/anatomy & histology , Cranial Sinuses/anatomy & histology , Skull/anatomy & histology , Animals , Brain/diagnostic imaging , Cranial Sinuses/diagnostic imaging , Fossils , Skull/diagnostic imaging , X-Ray Microtomography
3.
R Soc Open Sci ; 1(2): 140222, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26064545

ABSTRACT

Machimosaurus was a large-bodied genus of teleosaurid crocodylomorph, considered to have been durophagous/chelonivorous, and which frequented coastal marine/estuarine ecosystems during the Late Jurassic. Here, we revise the genus based on previously described specimens and revise the species within this genus. We conclude that there were three European Machimosaurus species and another taxon in Ethiopia. This conclusion is based on numerous lines of evidence: craniomandibular, dental and postcranial morphologies; differences in estimated total body length; geological age; geographical distribution; and hypothetical lifestyle. We re-diagnose the type species Machimosaurus hugii and limit referred specimens to only those from Upper Kimmeridgian-Lower Tithonian of Switzerland, Portugal and Spain. We also re-diagnose Machimosaurus mosae, demonstrate that it is an available name and restrict the species to the uppermost Kimmeridgian-lowermost Tithonian of northeastern France. We re-diagnose and validate the species Machimosaurus nowackianus from Harrar, Ethiopia. Finally, we establish a new species, Machimosaurus buffetauti, for the Lower Kimmeridgian specimens of France and Germany (and possibly England and Poland). We hypothesize that Machimosaurus may have been analogous to the Pliocene-Holocene genus Crocodylus in having one large-bodied taxon suited to traversing marine barriers and additional, geographically limited taxa across its range.

4.
R Soc Open Sci ; 1(3): 140269, 2014 Nov.
Article in English | MEDLINE | ID: mdl-26064563

ABSTRACT

Machimosaurus was a large-bodied durophagous/chelonivorous genus of teleosaurid crocodylomorph that lived in shallow marine and brackish ecosystems during the Late Jurassic. Among teleosaurids, Machimosaurus and its sister taxon 'Steneosaurus' obtusidens are characterized by having foreshortened rostra, proportionally enlarged supratemporal fenestrae and blunt teeth with numerous apicobasal ridges and a shorter anastomosed ridged pattern in the apical region. A recent study on 'S.' obtusidens dentition found both true denticles and false serrations (enamel ridges which contact the carinae). Here, we comprehensively describe and figure the dentition of Machimosaurus, and find that Machimosaurus buffetauti and Machimosaurus hugii have four types of serration or serration-like structures, including both denticles and false denticles on the carinae. The denticles are irregularly shaped and are not always discrete units, whereas the false denticles caused by the interaction between the superficial enamel ridges and the carinae are restricted to the apical region. Peculiarly, the most 'denticle-like' structures are discrete, bulbous units on the apicobasal and apical anastomosed ridges of M. hugii. These 'pseudo-denticles' have never, to our knowledge, previously been reported among crocodylomorphs, and their precise function is unclear. They may have increased the surface area of the apical region and/or strengthened the enamel, both of which would have been advantageous for a durophagous taxon feeding on hard objects such as turtles.

5.
PLoS One ; 7(9): e44985, 2012.
Article in English | MEDLINE | ID: mdl-23028723

ABSTRACT

BACKGROUND: Dakosaurus and Plesiosuchus are characteristic genera of aquatic, large-bodied, macrophagous metriorhynchid crocodylomorphs. Recent studies show that these genera were apex predators in marine ecosystems during the latter part of the Late Jurassic, with robust skulls and strong bite forces optimized for feeding on large prey. METHODOLOGY/PRINCIPAL FINDINGS: Here we present comprehensive osteological descriptions and systematic revisions of the type species of both genera, and in doing so we resurrect the genus Plesiosuchus for the species Dakosaurus manselii. Both species are diagnosed with numerous autapomorphies. Dakosaurus maximus has premaxillary 'lateral plates'; strongly ornamented maxillae; macroziphodont dentition; tightly fitting tooth-to-tooth occlusion; and extensive macrowear on the mesial and distal margins. Plesiosuchus manselii is distinct in having: non-amblygnathous rostrum; long mandibular symphysis; microziphodont teeth; tooth-crown apices that lack spalled surfaces or breaks; and no evidence for occlusal wear facets. Our phylogenetic analysis finds Dakosaurus maximus to be the sister taxon of the South American Dakosaurus andiniensis, and Plesiosuchus manselii in a polytomy at the base of Geosaurini (the subclade of macrophagous metriorhynchids that includes Dakosaurus, Geosaurus and Torvoneustes). CONCLUSIONS/SIGNIFICANCE: The sympatry of Dakosaurus and Plesiosuchus is curiously similar to North Atlantic killer whales, which have one larger 'type' that lacks tooth-crown breakage being sympatric with a smaller 'type' that has extensive crown breakage. Assuming this morphofunctional complex is indicative of diet, then Plesiosuchus would be a specialist feeding on other marine reptiles while Dakosaurus would be a generalist and possible suction-feeder. This hypothesis is supported by Plesiosuchus manselii having a very large optimum gape (gape at which multiple teeth come into contact with a prey-item), while Dakosaurus maximus possesses craniomandibular characteristics observed in extant suction-feeding odontocetes: shortened tooth-row, amblygnathous rostrum and a very short mandibular symphysis. We hypothesise that trophic specialisation enabled these two large-bodied species to coexist in the same ecosystem.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/physiology , Feeding Behavior , Osteology , Skull/anatomy & histology , Alligators and Crocodiles/classification , Animals , Bone and Bones/anatomy & histology , Dentition , Europe , Geography , Paleontology , Phylogeny , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...