Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Leukemia ; 37(7): 1454-1463, 2023 07.
Article in English | MEDLINE | ID: mdl-37169950

ABSTRACT

Chronic lymphocytic leukaemia (CLL) cells can express unmutated (U-CLL) or mutated (M-CLL) immunoglobulin heavy chain (IGHV) genes with differing clinical behaviours, variable B cell receptor (BCR) signalling capacity and distinct transcriptional profiles. As it remains unclear how these differences reflect the tumour cells' innate pre/post germinal centre origin or their BCR signalling competence, we applied mRNA/miRNA sequencing to 38 CLL cases categorised into three subsets by IGHV mutational status and BCR signalling capacity. We identified 492 mRNAs and 38 miRNAs differentially expressed between U-CLL and M-CLL, but only 9 mRNAs and 0 miRNAs associated with BCR competence within M-CLL. Of the IGHV-associated miRNAs, (14/38 (37%)) derived from chr14q32 clusters where all miRNAs were co-expressed with the MEG3 lncRNA from a cancer associated imprinted locus. Integrative analysis of miRNA/mRNA data revealed pronounced regulatory potential for the 14q32 miRNAs, potentially accounting for up to 25% of the IGHV-related transcriptome signature. GAB1, a positive regulator of BCR signalling, was potentially regulated by five 14q32 miRNAs and we confirmed that two of these (miR-409-3p and miR-411-3p) significantly repressed activity of the GAB1 3'UTR. Our analysis demonstrates a potential key role of the 14q32 miRNA locus in the regulation of CLL-related gene regulation.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , MicroRNAs , Humans , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , MicroRNAs/genetics , Mutation , RNA, Messenger/genetics
2.
Blood Adv ; 7(10): 2008-2017, 2023 05 23.
Article in English | MEDLINE | ID: mdl-36696540

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL), with high coexpression of BCL2 and MYC proteins (DE lymphoma), is considered an adverse prognostic indicator associated mostly with non-germinal center B-cell-like (non-GCB) DLBCL. BCL2/MYC overexpression is associated with B-cell receptor (BCR) pathway activation; consequently, DE DLBCL may be sensitive to BCR inhibitors. We assessed whether high BCL2/MYC coexpression by RNA sequencing could identify a patient subset responsive to ibrutinib using baseline biopsies from the PHOENIX trial, which evaluated the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in untreated non-GCB DLBCL. BCL2/MYC RNA expression was correlated with lower event-free survival (EFS) and overall survival (OS) using Kaplan-Meier estimates with Cox regression and log-rank testing. In total, 234 of 766 (30.5%) patients had high BCL2/MYC coexpression: 123 of 386 (31.9%) received ibrutinib plus R-CHOP and 111 of 380 (29.2%) received R-CHOP. EFS was superior with ibrutinib plus R-CHOP compared with R-CHOP alone in patients with high BCL2/MYC coexpression, but there was no significant impact on OS. However, EFS and OS showed clinically meaningful improvement with ibrutinib plus R-CHOP over R-CHOP alone in patients aged <60 years with high BCL2/MYC coexpression. We observed a significant association between high BCL2/MYC coexpression and activated B-cell-like and MYD88L265P/CD79B-mutated subtypes of DLBCL. Consequently, high BCL2/MYC coexpression identified a subset of non-GCB DLBCL that may be preferentially responsive to ibrutinib and warrants further investigation. This trial was registered at www.clinicaltrials.gov as #NCT01855750.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-myc , Humans , Antibodies, Monoclonal, Murine-Derived , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Prednisone/therapeutic use , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Rituximab/therapeutic use , Vincristine/therapeutic use
4.
Cell Signal ; 96: 110358, 2022 08.
Article in English | MEDLINE | ID: mdl-35597428

ABSTRACT

BTK inhibitors (BTKi) have dramatically improved outcomes for patients with chronic lymphocytic leukaemia (CLL) and some forms of B-cell lymphoma. However, new strategies are needed to enhance responses. Here we have performed a detailed analysis of the effects of BTKi on B-cell receptor (BCR)-induced signalling using primary malignant cells from CLL patients and B-lymphoma cell lines. Although BTK is considered as a key activator of PLCγ2, BTKi (ibrutinib and acalabrutinib) failed to fully inhibit calcium responses in CLL samples with strong BCR signalling capacity. This BTKi-resistant calcium signalling was sufficient to engage downstream calcium-dependent transcription and suppress CLL cell apoptosis and was entirely independent of BTK and not just its kinase activity as similar results were obtained using a BTK-degrading PROTAC. BTK-independent calcium signalling was also observed in two B-lymphoma cell lines where BTKi had little effect on the initial phase of the calcium response but did accelerate the subsequent decline in intracellular calcium. In contrast to BTKi, calcium responses were completely blocked by inhibition of SYK in CLL and lymphoma cells. Engagement of BTK-independent calcium responses was associated with BTK-independent phosphorylation of PLCγ2 on Y753 and Y759 in both CLL and lymphoma cells. Moreover, in CLL samples, inhibition of RAC, which can mediate BTK-independent activation of PLCγ2, cooperated with ibrutinib to suppress calcium responses. BTK-independent calcium signalling may limit the effectiveness of BTKi to suppress BCR signalling responses and our results suggest inhibition of SYK or dual inhibition of BTK and RAC as alternative strategies to strengthen pathway blockade.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Agammaglobulinaemia Tyrosine Kinase , Calcium/pharmacology , Drug Resistance, Neoplasm , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Phospholipase C gamma , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Antigen, B-Cell/metabolism
5.
Explor Target Antitumor Ther ; 3: 37-49, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35309250

ABSTRACT

Aim: T-helper cells could play an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), a common B-cell neoplasm. Although CLL cells can present soluble antigens targeted from the B-cell receptor to T-helper cells via major histocompatibility complex (MHC) class II, antigens recognized by some CLL cells may be encountered in a particulate form. Here the ability of CLL cells to internalize and present anti-immunoglobulin M (IgM) beads as a model for the interaction of CLL cells with particulate antigens was investigated. Methods: The effect of anti-IgM beads on antigen presentation pathways was analyzed using RNA-seq and internalization of anti-IgM beads by primary CLL cells was investigated using confocal microscopy and flow cytometry. Antigen presentation was investigated by analyzing activation of a T-cell line expressing a T-cell receptor specific for a peptide derived from mouse κ light chains after incubating CLL cells with a mouse κ light chain-containing anti-IgM monoclonal antibody. Kinase inhibitors were used to characterize the pathways mediating internalization and antigen presentation. Results: Stimulation of surface IgM of CLL cells increased expression of the antigen presentation machinery and CLL cells were able to phagocytose anti-IgM beads. Internalization of anti-IgM beads was associated with MHC class II-restricted activation of cognate T-helper cells. Antigen presentation by CLL cells was dependent on activity of spleen tyrosine kinase (SYK) and phosphatidylinositol 3-kinase delta (PI3Kδ) but was unaffected by inhibitors of Bruton's tyrosine kinase (BTK). Conclusions: CLL cells can internalize and present antigen from anti-IgM beads. This capacity of CLL cells may be particularly important for recruitment of T-cell help in vivo in response to particulate antigens.

6.
Cell Signal ; 94: 110311, 2022 06.
Article in English | MEDLINE | ID: mdl-35306137

ABSTRACT

B-cell receptor (BCR) signaling plays a major role in the pathogenesis of B-cell malignancies and is an established target for therapy, including in chronic lymphocytic leukemia cells (CLL), the most common B-cell malignancy. We previously demonstrated that activation of BCR signaling in primary CLL cells downregulated expression of PDCD4, an inhibitor of the translational initiation factor eIF4A and a potential tumor suppressor in lymphoma. Regulation of the PDCD4/eIF4A axis appeared to be important for expression of the MYC oncoprotein as MYC mRNA translation was increased following BCR stimulation and MYC protein induction was repressed by pharmacological inhibition of eIF4A. Here we show that MYC expression is also associated with PDCD4 down-regulation in CLL cells in vivo and characterize the signaling pathways that mediate BCR-induced PDCD4 down-regulation in CLL and lymphoma cells. PDCD4 downregulation was mediated by proteasomal degradation as it was inhibited by proteasome inhibitors in both primary CLL cells and B-lymphoma cell lines. In lymphoma cells, PDCD4 degradation was predominantly dependent on signaling via the AKT pathway. By contrast, in CLL cells, both ERK and AKT pathways contributed to PDCD4 down-regulation and dual inhibition using ibrutinib with either MEK1/2 or mTORC1 inhibition was required to fully reverse PDCD4 down-regulation. Consistent with this, dual inhibition of BTK with MEK1/2 or mTORC1 resulted in the strongest inhibition of BCR-induced MYC expression. This study provides important new insight into the regulation of mRNA translation in B-cell malignancies and a rationale for combinations of kinase inhibitors to target translation control and MYC expression.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Apoptosis Regulatory Proteins/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/therapeutic use , Signal Transduction
7.
NEJM Evid ; 1(7): EVIDoa2200006, 2022 Jul.
Article in English | MEDLINE | ID: mdl-38319255

ABSTRACT

BACKGROUND: GLOW is a phase 3 trial evaluating the efficacy and safety of ibrutinib-venetoclax in older patients and/or those with comorbidities with previously untreated chronic lymphocytic leukemia (CLL). METHODS: We randomly assigned (1:1) patients 65 years of age or older or those 18 to 64 years of age who also had a Cumulative Illness Rating Scale (CIRS) score greater than 6 (CIRS scores range from 0 to 56, with higher scores indicating more impaired function of organ systems) or creatinine clearance of less than 70 ml/min, to ibrutinib-venetoclax (3 cycles ibrutinib lead-in, then 12 cycles ibrutinib-venetoclax) or chlorambucil-obinutuzumab (6 cycles). The primary end point was progression-free survival (PFS) assessed by an independent review committee. Secondary end points included undetectable minimal residual disease (uMRD), response rates, and safety. RESULTS: This study enrolled 211 patients, with 106 randomly assigned to ibrutinib-venetoclax and 105 to chlorambucil-obinutuzumab. With a median follow-up of 27.7 months, there were 22 PFS events for ibrutinib-venetoclax and 67 events for chlorambucil-obinutuzumab. PFS was significantly longer for ibrutinib-venetoclax than for chlorambucil-obinutuzumab (hazard ratio, 0.216; 95% confidence interval [CI], 0.131 to 0.357; P<0.001). The improvement in PFS with ibrutinib-venetoclax was consistent across predefined subgroups, including patients 65 years of age or older or with a CIRS score greater than 6. The best uMRD rate in bone marrow by next-generation sequencing was significantly higher for ibrutinib-venetoclax (55.7%) than for chlorambucil-obinutuzumab (21.0%; P<0.001). The proportion of patients with sustained uMRD in peripheral blood from 3 to 12 months after end of treatment was 84.5% for ibrutinib-venetoclax and 29.3% for chlorambucil-obinutuzumab. Four patients treated with ibrutinib-venetoclax required subsequent therapy compared with 27 patients receiving chlorambucil-obinutuzumab (hazard ratio, 0.143; 95% CI, 0.050 to 0.410). Adverse events grade 3 or greater occurred for 80 (75.5%) and 73 (69.5%) patients receiving ibrutinib-venetoclax and chlorambucil-obinutuzumab, respectively, with neutropenia being most common in both arms (37 [34.9%] and 52 [49.5%]). There were 11 (10.4%) and 12 (11.4%) all-cause deaths in the ibrutinib-venetoclax and chlorambucil-obinutuzumab arms, respectively. CONCLUSIONS: Ibrutinib-venetoclax, an all-oral, once-daily, fixed-duration combination, demonstrated superior PFS and deeper and better sustained responses versus chlorambucil-obinutuzumab as first-line CLL treatment in older patients and/or those with comorbidities. (Funded by Janssen Research & Development, LLC, and Pharmacyclics; ClinicalTrials.gov number, NCT03462719.)

8.
Clin Cancer Res ; 27(20): 5647-5659, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34380642

ABSTRACT

PURPOSE: B-cell receptor (BCR) signaling is critical for the pathogenesis of chronic lymphocytic leukemia (CLL), promoting both malignant cell survival and disease progression. Although vital, understanding of the wider signaling network associated with malignant BCR stimulation is poor. This is relevant with respect to potential changes in response to therapy, particularly involving kinase inhibitors. In the current study, we describe a novel high-resolution approach to investigate BCR signaling in primary CLL cells and track the influence of therapy on signaling response. EXPERIMENTAL DESIGN: A kinobead/mass spectrometry-based protocol was used to study BCR signaling in primary CLL cells. Longitudinal analysis of samples donated by clinical trial patients was used to investigate the impact of chemoimmunotherapy and ibrutinib on signaling following surface IgM engagement. Complementary Nanostring and immunoblotting analysis was used to verify our findings. RESULTS: Our protocol isolated a unique, patient-specific signature of over 30 kinases from BCR-stimulated CLL cells. This signature was associated with 13 distinct Kyoto Encyclopedia of Genes and Genomes pathways and showed significant change in cells from treatment-naïve patients compared with those from patients who had previously undergone therapy. This change was validated by longitudinal analysis of clinical trials samples where BCR-induced kinome responses in CLL cells altered between baseline and disease progression in patients failing chemoimmunotherapy and between baseline and treatment in patients taking ibrutinib. CONCLUSIONS: These data comprise the first comprehensive proteomic investigation of the BCR signaling response within CLL cells and reveal unique evidence that these cells undergo adaptive reprogramming of this signaling in response to therapy.


Subject(s)
B-Lymphocytes/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Signal Transduction/physiology , Cytological Techniques/methods , Humans , Microspheres , Protein Kinase Inhibitors , Tumor Cells, Cultured
9.
Cell Mol Life Sci ; 78(17-18): 6337-6349, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34398253

ABSTRACT

Signaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


Subject(s)
Eukaryotic Initiation Factor-4A/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Antigen, B-Cell/metabolism , Antibodies, Anti-Idiotypic/pharmacology , Benzofurans/pharmacology , Cells, Cultured , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-myc/genetics , RNA Stability/drug effects , RNA, Messenger/metabolism , Signal Transduction/drug effects , Triterpenes/pharmacology
10.
Explor Target Antitumor Ther ; 1: 131-152, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32924028

ABSTRACT

Chronic lymphocytic leukemia is a common form of leukemia and is dependent on growth-promoting signaling via the B-cell receptor. The Bruton tyrosine kinase (BTK) is an important mediator of B-cell receptor signaling and the irreversible BTK inhibitor ibrutinib can trigger dramatic clinical responses in treated patients. However, emergence of resistance and toxicity are major limitations which lead to treatment discontinuation. There remains, therefore, a clear need for new therapeutic options. In this review, we discuss recent progress in the development of BTK-targeted proteolysis targeting chimeras (PROTACs) describing how such agents may provide advantages over ibrutinib and highlighting features of PROTACs that are important for the development of effective BTK degrading agents. Overall, PROTACs appear to be an exciting new approach to target BTK. However, development is at a very early stage and considerable progress is required to refine these agents and optimize their drug-like properties before progression to clinical testing.

11.
Leukemia ; 34(7): 1760-1774, 2020 07.
Article in English | MEDLINE | ID: mdl-32015491

ABSTRACT

Despite advances in chronic lymphocytic leukaemia (CLL) treatment, globally chemotherapy remains a central treatment modality, with chemotherapy trials representing an invaluable resource to explore disease-related/genetic features contributing to long-term outcomes. In 499 LRF CLL4 cases, a trial with >12 years follow-up, we employed targeted resequencing of 22 genes, identifying 623 mutations. After background mutation rate correction, 11/22 genes were recurrently mutated at frequencies between 3.6% (NFKBIE) and 24% (SF3B1). Mutations beyond Sanger resolution (<12% VAF) were observed in all genes, with KRAS mutations principally composed of these low VAF variants. Firstly, employing orthogonal approaches to confirm <12% VAF TP53 mutations, we assessed the clinical impact of TP53 clonal architecture. Whilst ≥ 12% VAF TP53mut cases were associated with reduced PFS and OS, we could not demonstrate a difference between <12% VAF TP53 mutations and either wild type or ≥12% VAF TP53mut cases. Secondly, we identified biallelic BIRC3 lesions (mutation and deletion) as an independent marker of inferior PFS and OS. Finally, we observed that mutated MAPK-ERK genes were independent markers of poor OS in multivariate survival analysis. In conclusion, our study supports using targeted resequencing of expanded gene panels to elucidate the prognostic impact of gene mutations.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Biomarkers, Tumor/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , MAP Kinase Signaling System/genetics , Mutation , Tumor Suppressor Protein p53/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cohort Studies , Cyclophosphamide/administration & dosage , Extracellular Signal-Regulated MAP Kinases/genetics , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Prognosis , Survival Rate , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
13.
Clin Cancer Res ; 26(7): 1700-1711, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31831562

ABSTRACT

PURPOSE: PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN: In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS: Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS: Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Activators/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Sesquiterpenes/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Inbred NOD , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Signal Transduction , Xenograft Model Antitumor Assays
14.
Blood Adv ; 3(16): 2474-2481, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31434681

ABSTRACT

Chronic lymphocytic leukemia patients with mutated immunoglobulin heavy-chain genes (IGHV-M), particularly those lacking poor-risk genomic lesions, often respond well to chemoimmunotherapy (CIT). DNA methylation profiling can subdivide early-stage patients into naive B-cell-like CLL (n-CLL), memory B-cell-like CLL (m-CLL), and intermediate CLL (i-CLL), with differing times to first treatment and overall survival. However, whether DNA methylation can identify patients destined to respond favorably to CIT has not been ascertained. We classified treatment-naive patients (n = 605) from 3 UK chemo and CIT clinical trials into the 3 epigenetic subgroups, using pyrosequencing and microarray analysis, and performed expansive survival analysis. The n-CLL, i-CLL, and m-CLL signatures were found in 80% (n = 245/305), 17% (53/305), and 2% (7/305) of IGHV-unmutated (IGHV-U) cases, respectively, and in 9%, (19/216), 50% (108/216), and 41% (89/216) of IGHV-M cases, respectively. Multivariate Cox proportional analysis identified m-CLL as an independent prognostic factor for overall survival (hazard ratio [HR], 0.46; 95% confidence interval [CI], 0.24-0.87; P = .018) in CLL4, and for progression-free survival (HR, 0.25; 95% CI, 0.10-0.57; P = .002) in ARCTIC and ADMIRE patients. The analysis of epigenetic subgroups in patients entered into 3 first-line UK CLL trials identifies m-CLL as an independent marker of prolonged survival and may aid in the identification of patients destined to demonstrate prolonged survival after CIT.


Subject(s)
DNA Methylation , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Adult , Aged , Aged, 80 and over , Chromosome Aberrations , Computational Biology/methods , Epigenesis, Genetic , Epigenomics/methods , Female , Gene Expression Profiling , Humans , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Middle Aged , Mutation , Neoplasm Staging , Prognosis , Proportional Hazards Models
15.
Cell Death Dis ; 10(8): 591, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391462

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), the prototypic progressive fibrotic interstitial lung disease, is thought to be a consequence of repetitive micro-injuries to an ageing, susceptible alveolar epithelium. Ageing is a risk factor for IPF and incidence has been demonstrated to increase with age. Decreased (macro)autophagy with age has been reported extensively in a variety of systems and diseases, including IPF. However, it is undetermined whether the role of faulty autophagy is causal or coincidental in the context of IPF. Here, we report that in alveolar epithelial cells inhibition of autophagy promotes epithelial-mesenchymal transition (EMT), a process implicated in embryonic development, wound healing, cancer metastasis and fibrosis. We further demonstrate that this is attained, at least in part, by increased p62/SQSTM1 expression that promotes p65/RELA mediated-transactivation of an EMT transcription factor, Snail2 (SNAI2), which not only controls EMT but also regulates the production of locally acting profibrogenic mediators. Our data suggest that reduced autophagy induces EMT of alveolar epithelial cells and can contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Idiopathic Pulmonary Fibrosis/genetics , Sequestosome-1 Protein/genetics , Snail Family Transcription Factors/genetics , Transcription Factor RelA/genetics , A549 Cells , Aging/genetics , Aging/pathology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Autophagy/genetics , Cell Differentiation/genetics , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Primary Cell Culture , Risk Factors , Transcription Factors
16.
Methods Mol Biol ; 1881: 1-17, 2019.
Article in English | MEDLINE | ID: mdl-30350193

ABSTRACT

Microenvironmental signaling is pivotal to chronic lymphocytic leukemia (CLL) pathology; therefore understanding how to investigate this pathway by both protein and chemical methods is crucial if we are to investigate and correlate biological changes with therapeutic responses in patients. Herein, we describe the use of western blotting also referred to as immunoblotting as a method that can semiquantitatively evaluate changes in protein expression following receptor engagement; this includes B cell receptor (BCR) signaling following stimulation with anti-IgM (Blunt et al. Clin Cancer Res 23(9):2313-2324, 2017). It is important to note that immunoblotting should always be combined with other quantitative methods such as flow cytometry to confirm activation of these signaling pathways (Aguilar-Hernandez et al. Blood 127(24):3015-3025, 2016).


Subject(s)
Blotting, Western/methods , Flow Cytometry/methods , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Signal Transduction , B-Lymphocytes/metabolism , Blotting, Western/instrumentation , Electrophoresis, Polyacrylamide Gel/instrumentation , Electrophoresis, Polyacrylamide Gel/methods , Flow Cytometry/instrumentation , Gene Expression Regulation, Leukemic , Humans , Receptors, Antigen, B-Cell/metabolism
17.
Clin Cancer Res ; 25(8): 2503-2512, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30373751

ABSTRACT

PURPOSE: In chronic lymphocytic leukemia (CLL), disease progression associates with surface IgM (sIgM) levels and signaling capacity. These are variably downmodulated in vivo and recover in vitro, suggesting a reversible influence of tissue-located antigen. Therapeutic targeting of sIgM function via ibrutinib, an inhibitor of Bruton tyrosine kinase (BTK), causes inhibition and tumor cell redistribution into the blood, with significant clinical benefit. Circulating CLL cells persist in an inhibited state, offering a tool to investigate the effects of drug on BTK-inhibited sIgM. EXPERIMENTAL DESIGN: We investigated the consequences of ibrutinib therapy on levels and function of sIgM in circulating leukemic cells of patients with CLL. RESULTS: At week 1, there was a significant increase of sIgM expression (64% increase from pretherapy) on CLL cells either recently released from tissue or persisting in blood. In contrast, surface IgD (sIgD) and a range of other receptors did not change. SIgM levels remained higher than pretherapy in the following 3 months despite gradual cell size reduction and ongoing autophagy and apoptotic activity. Conversely, IgD and other receptors did not increase and gradually declined. Recovered sIgM was fully N-glycosylated, another feature of escape from antigen, and expression did not increase further during culture in vitro. The sIgM was fully capable of mediating phosphorylation of SYK, which lies upstream of BTK in the B-cell receptor pathway. CONCLUSIONS: This specific IgM increase in patients underpins the key role of tissue-based engagement with antigen in CLL, confirms the inhibitory action of ibrutinib, and reveals dynamic adaptability of CLL cells to precision monotherapy.See related commentary by Burger, p. 2372.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Adenine/analogs & derivatives , Humans , Immunoglobulin M , Piperidines , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles , Pyrimidines
18.
PLoS One ; 13(8): e0202344, 2018.
Article in English | MEDLINE | ID: mdl-30169498

ABSTRACT

Prognostic modelling is important in clinical practice and epidemiology for patient management and research. Electronic health records (EHR) provide large quantities of data for such models, but conventional epidemiological approaches require significant researcher time to implement. Expert selection of variables, fine-tuning of variable transformations and interactions, and imputing missing values are time-consuming and could bias subsequent analysis, particularly given that missingness in EHR is both high, and may carry meaning. Using a cohort of 80,000 patients from the CALIBER programme, we compared traditional modelling and machine-learning approaches in EHR. First, we used Cox models and random survival forests with and without imputation on 27 expert-selected, preprocessed variables to predict all-cause mortality. We then used Cox models, random forests and elastic net regression on an extended dataset with 586 variables to build prognostic models and identify novel prognostic factors without prior expert input. We observed that data-driven models used on an extended dataset can outperform conventional models for prognosis, without data preprocessing or imputing missing values. An elastic net Cox regression based with 586 unimputed variables with continuous values discretised achieved a C-index of 0.801 (bootstrapped 95% CI 0.799 to 0.802), compared to 0.793 (0.791 to 0.794) for a traditional Cox model comprising 27 expert-selected variables with imputation for missing values. We also found that data-driven models allow identification of novel prognostic variables; that the absence of values for particular variables carries meaning, and can have significant implications for prognosis; and that variables often have a nonlinear association with mortality, which discretised Cox models and random forests can elucidate. This demonstrates that machine-learning approaches applied to raw EHR data can be used to build models for use in research and clinical practice, and identify novel predictive variables and their effects to inform future research.


Subject(s)
Coronary Artery Disease/diagnosis , Coronary Artery Disease/mortality , Diagnosis, Computer-Assisted/methods , Electronic Health Records , Machine Learning , Survival Analysis , Adult , Aged , Aged, 80 and over , Cohort Studies , Data Interpretation, Statistical , Female , Humans , Male , Middle Aged , Models, Biological , Prognosis
20.
Mol Cell Proteomics ; 17(4): 776-791, 2018 04.
Article in English | MEDLINE | ID: mdl-29367434

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell cancer exhibiting a wide spectrum of disease courses and treatment responses. Molecular characterization of RNA and DNA from CLL cases has led to the identification of important driver mutations and disease subtypes, but the precise mechanisms of disease progression remain elusive. To further our understanding of CLL biology we performed isobaric labeling and mass spectrometry proteomics on 14 CLL samples, comparing them with B-cells from healthy donors (HDB). Of 8694 identified proteins, ∼6000 were relatively quantitated between all samples (q<0.01). A clear CLL signature, independent of subtype, of 544 significantly overexpressed proteins relative to HDB was identified, highlighting established hallmarks of CLL (e.g. CD5, BCL2, ROR1 and CD23 overexpression). Previously unrecognized surface markers demonstrated overexpression (e.g. CKAP4, PIGR, TMCC3 and CD75) and three of these (LAX1, CLEC17A and ATP2B4) were implicated in B-cell receptor signaling, which plays an important role in CLL pathogenesis. Several other proteins (e.g. Wee1, HMOX1/2, HDAC7 and INPP5F) were identified with significant overexpression that also represent potential targets. Western blotting confirmed overexpression of a selection of these proteins in an independent cohort. mRNA processing machinery were broadly upregulated across the CLL samples. Spliceosome components demonstrated consistent overexpression (p = 1.3 × 10-21) suggesting dysregulation in CLL, independent of SF3B1 mutations. This study highlights the potential of proteomics in the identification of putative CLL therapeutic targets and reveals a subtype-independent protein expression signature in CLL.


Subject(s)
B-Lymphocytes/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Neoplasm Proteins/metabolism , Humans , Proteomics , Spliceosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...