Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21256, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040754

ABSTRACT

Understanding the thermal decomposition behavior of TATB (1,3,5-triamino-2,4,6-trinitrobenzene) is a major focus in energetic materials research because of safety issues. Previous research and modelling efforts have suggested benzo-monofurazan condensation producing H2O is the initiating decomposition step. However, early evolving CO2 (m/z 44) along with H2O (m/z 18) evolution have been observed by mass spectrometric monitoring of head-space gases in both constant heating rate and isothermal decomposition studies. The source of the CO2 has not been explained, until now. With the recent successful synthesis of 13C6-TATB (13C incorporated into the benzene ring), the same experiments have been used to show the source of the CO2 is the early breakdown of the TATB ring, not adventitious C from impurities and/or adsorbed CO2. A shift in mass m/z 44 (CO2) to m/z 45 is observed throughout the decomposition process indicating the isotopically labeled 13C ring breakdown occurs at the onset of thermal decomposition along with furazan formation. Partially labeled (N18O2)3-TATB confirms at least some of the oxygen comes from the nitro-groups. This finding has a significant bearing on decomposition computational models for prediction of energy release and deflagration to detonation transitions, with respect to conditions which currently do not recognize this oxidation step.

2.
Molecules ; 26(14)2021 Jul 11.
Article in English | MEDLINE | ID: mdl-34299484

ABSTRACT

Mono- and dinitro-BN-naphthalenes, i.e., 1-nitro-, 3-nitro-, 1,6-dinitro-, 3,6-dinitro-, and 1,8-dinitro-BNN, were generated in the nitration of 9,10-BN-naphthalene (BNN), a boron-nitrogen (BN) bond-embedded naphthalene, with AcONO2 and NO2BF4 in acetonitrile. The nitrated products were isolated and characterized by NMR, GC-MS, IR, and X-ray single crystallography. The effects of the nitration on the electron density and aromaticity of BNN were evaluated by B-11 NMR analysis and HOMA calculations.

3.
J Phys Chem A ; 118(38): 8695-700, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25226115

ABSTRACT

Efforts to synthesize, characterize, and recover novel polynitrogen energetic materials have driven attempts to subject high nitrogen content precursor materials (in particular, metal and nonmetal azides) to elevated pressures. Here we present a combined theoretical and experimental study of the high-pressure behavior of ammonium azide (NH4N3). Using density functional theory, we have considered the relative thermodynamic stability of the material with respect to two other crystal phases, namely, trans-tetrazene (TTZ), and also a novel hydronitrogen solid (HNS) of the form (NH)4, that was recently predicted to become relatively stable under high pressure. Experimentally, we have measured the Raman spectra of NH4N3 up to 71 GPa at room temperature. Our calculations demonstrate that the HNS becomes stable only at pressures much higher (89.4 GPa) than previously predicted (36 GPa). Our Raman spectra are consistent with previous reports up to lower pressures and at higher pressures, while some additional subtle behavior is observed (e.g., mode splitting), there is again no evidence of a phase transition to either TTZ or the HNS.

SELECTION OF CITATIONS
SEARCH DETAIL
...