Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Musculoskelet Disord ; 20(1): 93, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30808331

ABSTRACT

BACKGROUND: The objective of this study was to use confocal fluorescence recovery after photobleaching (FRAP) to examine the specific and dose-dependent effect of proteoglycan 4 (PRG4) on hyaluronan (HA) solutions of different molecular weight; and assess the effect of reduction and alkylation (R/A) of PRG4 on its effects on HA solutions. METHODS: Confocal FRAP was used to determine the diffusion coefficient of fluorescein isothiocyanate (FITC)-dextran tracer (Dt) through 1500 kDa and 500 kDa HA solutions (0-3.3 mg/ml) ± PRG4 or a control protein, bovine serum albumin (BSA), at physiological (450 µg/ml) or pathophysiological (45 µg/ml) concentrations. The effect of PRG4 or R/A PRG4 on 1500 kDa HA solutions was also investigated. Empirical constants obtained from fitting data to the universal scaling equation were used to calculate the average distribution of apparent mesh sizes. RESULTS: PRG4 at both 45 and 450 µg/ml slowed the diffusion of the FITC-dextran tracer for all concentrations of HA and caused a decrease in the apparent mesh size within the HA solution. This effect was specific to PRG4, not observed with BSA, but not dependent on its tertiary/quaternary structure as the effect remained after R/A of PRG4. CONCLUSIONS: These results demonstrate that PRG4 can significantly alter the solution properties of HA; PRG4 essentially reduced the permeability of the HA network. This effect may be due to PRG4 entangling HA molecules through binding and/or HA crowding PRG4 molecules into a self-assembled network. Collectively these findings contribute to the understanding of PRG4 and HA interaction(s) in solution and therefore the function of SF in diarthroidal joints.


Subject(s)
Fluorescence Recovery After Photobleaching/methods , Hyaluronic Acid/metabolism , Hyaluronic Acid/pharmacology , Proteoglycans/metabolism , Proteoglycans/pharmacology , Animals , Cattle , Dose-Response Relationship, Drug , Microscopy, Confocal/methods , Pharmaceutical Solutions/metabolism , Pharmaceutical Solutions/pharmacology
2.
Biochemistry ; 51(1): 19-31, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22185585

ABSTRACT

The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, regulates the expression of drug-metabolizing enzymes in a ligand-dependent manner. The conventional view of nuclear receptor action is that ligand binding enhances the receptor's affinity for coactivator proteins, while decreasing its affinity for corepressors. To date, however, no known rigorous biophysical studies have been conducted to investigate the interaction among PXR, its coregulators, and ligands. In this work, steady-state total internal reflection fluorescence microscopy (TIRFM) and total internal reflection with fluorescence recovery after photobleaching were used to measure the thermodynamics and kinetics of the interaction between the PXR ligand binding domain and a peptide fragment of the steroid receptor coactivator-1 (SRC-1) in the presence and absence of the established PXR agonist, rifampicin. Equilibrium dissociation and dissociation rate constants of ~5 µM and ~2 s(-1), respectively, were obtained in the presence and absence of rifampicin, indicating that the ligand does not enhance the affinity of the PXR and SRC-1 fragments. Additionally, TIRFM was used to examine the interaction between PXR and a peptide fragment of the corepressor protein, the silencing mediator for retinoid and thyroid receptors (SMRT). An equilibrium dissociation constant of ~70 µM was obtained for SMRT in the presence and absence of rifampicin. These results strongly suggest that the mechanism of ligand-dependent activation in PXR differs significantly from that seen in many other nuclear receptors.


Subject(s)
Nuclear Receptor Co-Repressor 2/chemistry , Nuclear Receptor Coactivator 1/chemistry , Peptide Fragments/chemistry , Receptors, Steroid/chemistry , Rifampin/chemistry , Amino Acid Sequence , Humans , Ligands , Molecular Sequence Data , Nuclear Receptor Co-Repressor 2/metabolism , Nuclear Receptor Coactivator 1/metabolism , Peptide Fragments/metabolism , Pregnane X Receptor , Protein Binding , Receptors, Steroid/agonists , Receptors, Steroid/metabolism , Rifampin/metabolism
3.
J Phys Chem B ; 113(14): 4837-45, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19296673

ABSTRACT

Fluorescence recovery after photobleaching and fluorescence correlation spectroscopy are the primary means for studying translational diffusion in biological systems. Both techniques, however, present numerous obstacles for measuring translational mobility in structures only slightly larger than optical resolution. We report a new method using through-prism total internal reflection fluorescence microscopy with continuous photobleaching to overcome these obstacles. Small structures, such as prokaryotic cells or isolated eukaryotic organelles, containing fluorescent molecules are adhered to a surface. This surface is continuously illuminated by an evanescent wave created by total internal reflection. The characteristic length describing the decay of the evanescent intensity with distance from the surface is smaller than the structures. The fluorescence decay rate resulting from continuous evanescent illumination is monitored as a function of the excitation intensity. The data at higher excitation intensities provide apparent translational diffusion coefficients for the fluorescent molecules within the structures because the decay results from two competing processes (the intrinsic photobleaching propensity and diffusion in the small structures). We present the theoretical basis for the technique and demonstrate its applicability by measuring the diffusion coefficient, 6.3 +/- 1.1 microm(2)/s, of green fluorescent protein in Escherichia coli cells.


Subject(s)
Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Photobleaching , Biological Transport, Active , Diffusion , Escherichia coli/chemistry , Escherichia coli/cytology , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/chemistry , Spectrometry, Fluorescence , Surface Properties , Time Factors
4.
Nat Protoc ; 2(4): 878-90, 2007.
Article in English | MEDLINE | ID: mdl-17446873

ABSTRACT

Total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) is an emerging technique that is used to measure events at or near an interface, including local fluorophore concentrations, local translational mobilities and the kinetic rate constants that describe the association and dissociation of fluorophores at the interface. TIR-FCS is also an extremely promising method for studying dynamics at or near the basal membranes of living cells. This protocol gives a general overview of the steps necessary to construct and test a TIR-FCS system using either through-prism or through-objective internal reflection geometry adapted for FCS. The expected forms of the autocorrelation function are discussed for the cases in which fluorescent molecules in solution diffuse through the depth of the evanescent field, but do not bind to the surface of interest, and in which reversible binding to the surface also occurs.


Subject(s)
Spectrometry, Fluorescence/methods , Fluorescent Dyes/analysis , Kinetics , Ligands , Spectrometry, Fluorescence/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL