Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 448: 238-50, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25744855

ABSTRACT

Energy cane biochar (ECBC) was prepared in a 72 s fast pyrolysis at 425 °C in an auger-fed reactor and ground into 250-600 µm diameter particles. This biochar was magnetized by fusing an iron oxide phase to the particles by mixing aqueous biochar suspensions with aqueous Fe(3+)/Fe(2+) solutions, followed by NaOH treatment (MECBC). These biochars were characterized by Raman, FT-IR, X-ray, SEM, SEM-EDX, TEM, EDXRF, pHzpc, elemental analyses, S(BET), and magnetic moment determinations. The S(BET) of energy cane biochar was negligible and increased to 37.13 m(2)/g after Fe(3+)/Fe(2+)/NaOH magnetization. The dry biochar contains 18.4% oxygen. This allows swelling in water and permits sorption inside the solid as well as on its pore surfaces, leading to high capacities at low surface areas. Maximum lead removal occurred at pH 4-5. Sorption isotherms exhibited increasing lead removal (Q(0), mg/g) as temperature increased for nonmagnetic [Q(0)(25 °C)=45.70; Q(0)(35 °C)=52.01 and Q(0)(45 °C)=69.37] and magnetic [Q(0)(25 °C)=40.56; Q(0)(35 °C)=51.17 and Q(0)(45 °C)=51.75] biochars. Second order kinetics best fit the lead removal data. Furthermore, magnetic energy cane biochar was easily manipulated by low external magnetic field, thereby, allowing its easy recovery for further recycling and replacement from water. ECBC and MECBC were also successfully applied for Pb(2+) removal from contaminated ground water. Therefore, both chars can be used as potential green low cost sorbents for lead remediation to replace commercial activated carbon.


Subject(s)
Charcoal/chemistry , Lead/isolation & purification , Magnets/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Electrochemical Techniques , Ferric Compounds/chemistry , Water Purification/methods
3.
J Hazard Mater ; 188(1-3): 319-33, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21354700

ABSTRACT

Oak wood and oak bark chars were obtained from fast pyrolysis in an auger reactor at 400-450 °C. These chars were characterized and utilized for Cr(VI) remediation from water. Batch sorption studies were performed at different temperatures, pH values and solid to liquid ratios. Maximum chromium was removed at pH 2.0. A kinetic study yielded an optimum equilibrium time of 48 h with an adsorbent dose of 10 g/L. Sorption studies were conducted over a concentration range of 1-100mg/L. Cr(VI) removal increased with an increase in temperature (Q(Oak wood)(°): 25 °C = 3.03 mg/g; 35 °C = 4.08 mg/g; 45 °C = 4.93 mg/g and Q(Oakbark)(°): 25 °C = 4.62 mg/g; 35 °C = 7.43 mg/g; 45 °C = 7.51 mg/g). More chromium was removed with oak bark than oak wood. The char performances were evaluated using the Freundlich, Langmuir, Redlich-Peterson, Toth, Radke and Sips adsorption isotherm models. The Sips adsorption isotherm model best fits the experimental data [high regression (R(2)) coefficients]. The overall kinetic data was satisfactorily explained by a pseudo second order rate expression. Water penetrated into the char walls exposing Cr(VI) to additional adsorption sites that were not on the surfaces of dry char pores. It is remarkable that oak chars (S(BET): 1-3m(2)g(-1)) can remove similar amounts of Cr(VI) as activated carbon (S(BET): ∼ 1000 m(2)g(-1)). Thus, byproduct chars from bio-oil production might be used as inexpensive adsorbents for water purification. Char samples were successfully used for chromium remediation from contaminated surface water with dissolved interfering ions.


Subject(s)
Charcoal/chemistry , Chromium/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Carbon , Coal Ash , Environmental Restoration and Remediation/methods , Hydrogen-Ion Concentration , Kinetics , Particulate Matter , Temperature
4.
Appl Biochem Biotechnol ; 154(1-3): 3-13, 2009 May.
Article in English | MEDLINE | ID: mdl-19050831

ABSTRACT

The pretreatment of biomass prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass feed stocks leading to a change in the mechanism of biomass thermal decomposition. Pretreatment of feed stocks prior to fast pyrolysis provides an opportunity to produce bio-oils with varied chemical composition and physical properties. This provides the potential to vary bio-oil chemical and physical properties for specific applications. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we applied six chemical pretreatments: dilute phosphoric acid, dilute sulfuric acid, sodium hydroxide, calcium hydroxide, ammonium hydroxide, and hydrogen peroxide. Bio-oils were produced from untreated and pretreated 10-year old pine wood feed stocks in an auger reactor at 450 degrees C. The bio-oils' physical properties of pH, water content, acid value, density, viscosity, and heating value were measured. Mean molecular weights and polydispersity were determined by gel permeation chromatography. Chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry and Fourier transform infrared techniques. Results showed that the physical and chemical characteristics of the bio-oils produced from pretreated pine wood feed stocks were influenced by the biomass pretreatments applied. These physical and chemical changes are compared and discussed in detail in the paper.


Subject(s)
Hot Temperature , Pinus/chemistry , Plant Oils/chemistry , Wood/chemistry , Biomass , Hydrogen-Ion Concentration , Time Factors , Viscosity , Water/chemistry
5.
Appl Biochem Biotechnol ; 148(1-3): 1-13, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18418737

ABSTRACT

Postharvest residues for southern pine species have not previously been quantified to compare volumes produced from both thinnings and clearcut volumes. A John Deere 1490 Slash Bundler bundled postharvest residues following a first thinning of a 14-year-old stand, a second thinning of a 25-year-old stand, and a clearcut of a naturally regenerated mature stand of 54 years of age. Regardless of stand type, nearly one-fifth of merchantable volume harvested was collected as postharvest residue. Initial bundle moisture contents were 127.3, 81.1, and 49.4% dry basis (db) for the first and second thinnings and mature stands, respectively. Bundle needles content was found to significantly influence the relative moisture contents of the bundles by stand type due to the high moisture content of needles compared to other bundle components. Bundles were stored outside and exposed to very hot and dry conditions and dried very rapidly to lowest moisture contents of 22.8, 14.5, and 13.5% (db) for first and second thinnings and mature stands, respectively. Response to moderating temperatures and higher precipitation resulted in rapid moisture content increase to 69.9, 46.2, and 38.1% (db) for the first and second thinnings and mature stand bundles by the end of the study. Temperature and precipitation and bundle percentage needles content all significantly influenced the rapid moisture content variations observed over the study periods.


Subject(s)
Biomass , Chemistry , Ecosystem , Forestry/methods , Fossil Fuels , Industrial Waste/prevention & control , Pinus/chemistry , Chemical Phenomena
6.
Chemosphere ; 71(3): 456-65, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18093634

ABSTRACT

Pine wood, pine bark, oak wood and oak bark were pyrolyzed in an auger reactor. A total of 16 bio-oils or pyrolytic oils were generated at different temperatures and residence times. Two additional pine bio-oils were produced at the National Renewable Energy Laboratory in a fluidized-bed reactor at different temperatures. All these bio-oils were fractionated to obtain lignin-rich fractions which consist mainly of phenols and neutrals. The pyrolytic lignin-rich fractions were obtained by liquid-liquid extraction. Whole bio-oils and their lignin-rich fractions were studied as potential environmentally benign wood preservatives to replace metal-based CCA and copper systems that have raised environmental concerns. Each bio-oil and several lignin-rich fractions were tested for antifungal properties. Soil block tests were conducted using one brown-rot fungus (Gloeophyllum trabeum) and one white-rot fungus (Trametes versicolor). The lignin-rich fractions showed greater fungal inhibition than whole bio-oils for a impregnation solution 10% concentration level. Water repellence tests were also performed to study wood wafer swelling behavior before and after bio-oil and lignin-rich fraction treatments. In this case, bio-oil fractions did not exhibit higher water repellency than whole bio-oils. Comparison of raw bio-oils in soil block tests, with unleached wafers, at 10% and 25% bio-oil impregnation solution concentration levels showed excellent wood preservation properties at the 25% level. The good performance of raw bio-oils at higher loading levels suggests that fractionation to generate lignin-rich fractions is unnecessary. At this more effective 25% loading level in general, the raw bio-oils performed similarly. Prevention of leaching is critically important for both raw bio-oils and their fractions to provide decay resistance. Initial tests of a polymerization chemical to prevent leaching showed some success.


Subject(s)
Basidiomycota/drug effects , Fungicides, Industrial/pharmacology , Lignin/pharmacology , Pinus , Plant Oils/pharmacology , Quercus , Hot Temperature , Plant Bark/chemistry , Wood/chemistry
7.
J Colloid Interface Sci ; 310(1): 57-73, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17331527

ABSTRACT

Bio-char by-products from fast wood/bark pyrolyses, were investigated as adsorbents for the removal of the toxic metals (As(3+), Cd(2+), Pb(2+)) from water. Oak bark, pine bark, oak wood, and pine wood chars were obtained from fast pyrolysis at 400 and 450 degrees C in an auger-fed reactor and characterized. A commercial activated carbon was also investigated for comparison. Chars were sieved (>600, 600-250, 250-177, 177-149, and <149 microm) and the particle size fraction from 600 to 250 microm was used without further modification for all studies unless otherwise stated. Sorption studies were performed at different temperatures, pHs, and solid to liquid ratios in the batch mode. Maximum adsorption occurred over a pH range 3-4 for arsenic and 4-5 for lead and cadmium. Kinetic studies yielded an optimum equilibrium time of 24 h with an adsorbent dose of 10 g/L and concentration approximately 100 mg/L for lead and cadmium. Sorption isotherms studies were conducted in broad concentration ranges (1-1000 ppb for arsenic, 1x10(-5)-5x10(-3) M for lead and cadmium). Oak bark out-performed the other chars and nearly mimicked Calgon F-400 adsorption for lead and cadmium. In an aqueous lead solution with initial concentration of 4.8x10(-4) M, both oak bark and Calgon F-400 (10 g/L) removed nearly 100% of the heavy metal. Oak bark (10 g/L) also removed about 70% of arsenic and 50% of cadmium from aqueous solutions. Varying temperatures (e.g., 5, 25, and 40 degrees C) were used to determine the effect of temperatures. The equilibrium data were modeled with the help of Langmuir and Freundlich equations. Overall, the data are well fitted with both the models, with a slight advantage for Langmuir model. The oak bark char's ability to remove Pb(II) and Cd(II) is remarkable when considered in terms of the amount of metal adsorbed per unit surface area (0.5157 mg/m(2) for Pb(II) and 0.213 mg/m(2) for Cd(II) versus that of commercial activated carbon.


Subject(s)
Arsenic/chemistry , Cadmium/chemistry , Charcoal/chemistry , Lead/chemistry , Water Pollutants, Chemical/isolation & purification , Wood/chemistry , Adsorption , Biomass , Incineration , Kinetics , Models, Chemical , Pinus/chemistry , Plant Bark/chemistry , Quercus/chemistry , Spectroscopy, Fourier Transform Infrared
8.
J Colloid Interface Sci ; 297(2): 489-504, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16375914

ABSTRACT

A new biosorbent for removing toxic metal ions from water/industrial wastewater has been investigated using by-product lignin from paper production. Lignin was extracted from black liquor waste, characterized and utilized for the removal of copper and cadmium from aqueous solutions in single, binary and multi-component systems. Adsorption studies were conducted at different temperatures, lignin particle sizes, pHs and solid to liquid ratios. All the studies were conducted by a batch method to determine equilibrium and kinetic parameters. The Langmuir and Freundlich isotherm models were applied. The Langmuir model fits best the equilibrium isotherm data. The maximum lignin adsorption capacities at 25 degrees C were 87.05 mg/g (1.37 mmol/g) and 137.14 mg/g (1.22 mmol/g) for Cu(II) and Cd(II), respectively. Adsorption of Cu2+ (68.63 mg/g at 10 degrees C and 94.68 mg/g at 40 degrees C) and Cd2+ (59.58 mg/g at 10 degrees C and 175.36 mg/g at 40 degrees C) increased with an increase in temperature. Copper and cadmium adsorption followed pseudo-second order rate kinetics. From kinetic studies, various rate and thermodynamic parameters such as effective diffusion coefficients, activation energy, and activation entropy were evaluated. Adsorption occurs through a particle diffusion mechanism at temperatures 10 and 25 degrees C while at 40 degrees C it occurs through a film diffusion mechanism. The sorption capacity of black liquor lignin is higher than many other adsorbents/carbons/biosorbents utilized for the removal of Cu(II) and Cd(II) from water/wastewater in single and multi-component systems.


Subject(s)
Cadmium/isolation & purification , Copper/isolation & purification , Lignin , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Diffusion , Kinetics , Solutions , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...