Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240294

ABSTRACT

Mutations in the HFE/Hfe gene cause Hereditary Hemochromatosis (HH), a highly prevalent genetic disorder characterized by elevated iron deposition in multiple tissues. HFE acts in hepatocytes to control hepcidin expression, whereas HFE actions in myeloid cells are required for cell-autonomous and systemic iron regulation in aged mice. To address the role of HFE specifically in liver-resident macrophages, we generated mice with a selective Hfe deficiency in Kupffer cells (HfeClec4fCre). The analysis of the major iron parameters in this novel HfeClec4fCre mouse model led us to the conclusion that HFE actions in Kupffer cells are largely dispensable for cellular, hepatic and systemic iron homeostasis.


Subject(s)
Hemochromatosis , Kupffer Cells , Mice , Animals , Kupffer Cells/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Membrane Proteins/metabolism , Liver/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Hemochromatosis/genetics , Hemochromatosis/metabolism , Iron/metabolism , Mice, Knockout
2.
Trends Endocrinol Metab ; 33(9): 652-663, 2022 09.
Article in English | MEDLINE | ID: mdl-35871125

ABSTRACT

Hereditary hemochromatosis (HH) is a genetic disorder in which mutations affect systemic iron homeostasis. Most subtypes of HH result in low hepcidin levels and iron overload. Accumulation of iron in various tissues can lead to widespread organ damage and to various complications, including liver cirrhosis, arthritis, and diabetes. Osteoporosis is another frequent complication of HH, and the underlying mechanisms are poorly understood. Currently, it is unknown whether iron overload in HH directly damages bone or whether complications associated with HH, such as liver cirrhosis or hypogonadism, affect bone secondarily. This review summarizes current knowledge of bone metabolism in HH and highlights possible implications of metabolic dysfunction in HH-driven bone loss. We further discuss therapeutic considerations managing osteoporosis in HH.


Subject(s)
Hemochromatosis , Iron Overload , Osteoporosis , Hemochromatosis/complications , Hemochromatosis/genetics , Hemochromatosis/metabolism , Humans , Iron/metabolism , Iron Overload/complications , Iron Overload/genetics , Liver Cirrhosis/complications , Osteoporosis/genetics
3.
Commun Biol ; 4(1): 662, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34079054

ABSTRACT

Pathological impulsivity is a debilitating symptom of multiple psychiatric diseases with few effective treatment options. To identify druggable receptors with anti-impulsive action we developed a systematic target discovery approach combining behavioural chemogenetics and gene expression analysis. Spatially restricted inhibition of three subdivisions of the prefrontal cortex of mice revealed that the anterior cingulate cortex (ACC) regulates premature responding, a form of motor impulsivity. Probing three G-protein cascades with designer receptors, we found that the activation of Gi-signalling in layer-5 pyramidal cells (L5-PCs) of the ACC strongly, reproducibly, and selectively decreased challenge-induced impulsivity. Differential gene expression analysis across murine ACC cell-types and 402 GPCRs revealed that - among Gi-coupled receptor-encoding genes - Grm2 is the most selectively expressed in L5-PCs while alternative targets were scarce. Validating our approach, we confirmed that mGluR2 activation reduced premature responding. These results suggest Gi-coupled receptors in ACC L5-PCs as therapeutic targets for impulse control disorders.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/physiology , Gyrus Cinguli/cytology , Gyrus Cinguli/physiology , Pyramidal Cells/physiology , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Female , GTP-Binding Protein alpha Subunits, Gi-Go/drug effects , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Gene Expression/drug effects , Gyrus Cinguli/drug effects , Humans , Impulsive Behavior/drug effects , Impulsive Behavior/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Receptors, Metabotropic Glutamate/drug effects , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...