Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338409

ABSTRACT

Two fundamental halocarbon ions, CH2Cl+ and CH3ClH+, were studied in the gas phase using the FELion 22-pole ion trap apparatus and the Free Electron Laser for Infrared eXperiments (FELIX) at Radboud University, Nijmegen (the Netherlands). The vibrational bands of a total of four isotopologs, CH235,37Cl+ and CH335,37ClH+, were observed in selected wavenumber regions between 500 and 2900 cm-1 and then spectroscopically assigned based on the results of anharmonic force field calculations performed at the CCSD(T) level of theory. As the infrared photodissociation spectroscopy scheme employed probes singly Ne-tagged weakly bound complexes, complementary quantum-chemical calculations of selected species were also performed. The impact of tagging on the vibrational spectra of CH2Cl+ and CH3ClH+ is found to be virtually negligible for most bands; for CH3ClH+-Ne, the observations suggest a proton-bound structural arrangement. The experimental band positions as well as the best estimate rotational molecular parameters given in this work provide a solid basis for future spectroscopic studies at high spectral resolutions.

2.
Phys Chem Chem Phys ; 26(3): 2692-2703, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38175663

ABSTRACT

Infrared messenger-tagging predissociation action spectroscopy (IRPD) is a well-established technique to record vibrational spectra of reactive molecular ions. One of its major drawbacks is that the spectrum of the messenger-ion complex is taken instead of that of the bare ion. In particular for small open-shell species, such as the Renner-Teller (RT) affected HCCH+ and DCCD+, the attachment of the tag may have a significant impact on the spectral features. Here we present the application of the novel leak-out spectroscopy (LOS) as a tag-free method to record the cis-bending of the HCCH+ (∼700 cm-1) and DCCD+ cations (∼520 cm-1), using a cryogenic ion trap end user station at the FELIX laboratory. We demonstrate that the obtained LOS spectrum is equivalent to a previously recorded laser-induced reactions (LIR) spectrum of HCCH+. The bending modes are the energetically lowest-lying vibrational modes targeted with LOS so far, showing its potential as a universal broadband spectroscopic technique. Furthermore, we have investigated the effect of the rare gas attachment by recording the vibrational spectra of Ne- and Ar-tagged HCCH+. We found that the Ne-attachment led to a shift in band positions and change in relative intensities, while the Ar-attachment even led to a complete quenching of the RT splitting, showing the importance of using a tag-free method for RT affected systems. The results are interpreted with the help of high-level ab initio calculations in combination with an effective Hamiltonian approach.

3.
Faraday Discuss ; 245(0): 221-244, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37404008

ABSTRACT

The cationic fragmentation products in the dissociative ionization of pyridine and benzonitrile have been studied by infrared action spectroscopy in a cryogenic ion trap instrument at the Free-Electron Lasers for Infrared eXperiments (FELIX) Laboratory. A comparison of the experimental vibrational fingerprints of the dominant cationic fragments with those from quantum chemical calculations revealed a diversity of molecular fragment structures. The loss of HCN/HNC is shown to be the major fragmentation channel for both pyridine and benzonitrile. Using the determined structures of the cationic fragments, potential energy surfaces have been calculated to elucidate the nature of the neutral fragment partner. In the fragmentation chemistry of pyridine, multiple non-cyclic structures are formed, whereas the fragmentation of benzonitrile dominantly leads to the formation of cyclic structures. Among the fragments are linear cyano-(di)acetylene˙+, methylene-cyclopropene˙+ and o- and m-benzyne˙+ structures, the latter possible building blocks in interstellar polycyclic aromatic hydrocarbon (PAH) formation chemistry. Molecular dynamics simulations using density functional based tight binding (MD/DFTB) were performed and used to benchmark and elucidate the different fragmentation pathways based on the experimentally determined structures. The implications of the difference in fragments observed for pyridine and benzonitrile are discussed in an astrochemical context.

4.
J Chem Phys ; 158(8): 084305, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36859081

ABSTRACT

The linear radical cation of cyanoacetylene, HC3N+ (2Π), is not only of astrophysical interest, being the, so far undetected, cationic counterpart of the abundant cyanoaceteylene, but also of fundamental spectroscopic interest due to its strong spin-orbit and Renner-Teller interactions. Here, we present the first broadband vibrational action spectroscopic investigation of this ion through the infrared pre-dissociation (IRPD) method using a Ne tag. Experiments have been performed using the FELion cryogenic ion-trap instrument in combination with the FELIX free-electron lasers and a Laservision optical parametric oscillator/optical parametric amplifier system. The vibronic splitting patterns of the three interacting bending modes (ν5, ν6, ν7), ranging from 180 to 1600 cm-1, could be fully resolved revealing several bands that were previously unobserved. The associated Renner-Teller and intermode coupling constants have been determined by fitting an effective Hamiltonian to the experimental data, and the obtained spectroscopic constants are in reasonable agreement with previous photoelectron spectroscopy (PES) studies and ab initio calculations on the HC3N+ ion. The influence of the attached Ne atom on the infrared spectrum has been investigated by ab initio calculations at the RCCSD(T)-F12a level of theory, which strongly indicates that the discrepancies between the IRPD and PES data are a result of the effects of the Ne attachment.

SELECTION OF CITATIONS
SEARCH DETAIL
...