Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 12(31): 9088-93, 2010 Aug 21.
Article in English | MEDLINE | ID: mdl-20532316

ABSTRACT

As calculated by the density functional theory (DFT), the acidity of cytosine's exocyclic amine group (C-N(4)H2) in the base pair G-C is considerably increased upon its one-electron oxidation. The proton affinity (PA) of the amine moiety is lowered by ionisation of G-C (which yields G(*+)-C) from -348.1 to -269.1 kcal mol(-1). The PA is further decreased by 7.6 kcal mol(-1) as a result of the ensuing proton transfer from G(*+) to C to yield the spin-charge separated base pair G(-H)(*)-C(+H)(+). Under these conditions and taking the hydration energy of H(+) into account, the overall proton transfer from the C-N(4)H2 group to the aqueous phase in the major groove is exothermic by -2.4 kcal mol(-1). This proton transfer to water from the initially present DNA radical cation constitutes separation of charge from spin and thus reduces positive charge transfer in double stranded DNA.


Subject(s)
Cytosine/chemistry , Electrons , Guanine/chemistry , Base Pairing , Hydrogen Bonding , Oxidation-Reduction , Protons , Thermodynamics , Water/chemistry
2.
Phys Chem Chem Phys ; 9(2): 288-98, 2007 Jan 14.
Article in English | MEDLINE | ID: mdl-17186072

ABSTRACT

The time-resolved formation of the retinyl carbocation from all-trans-retinol and all-trans-retinol acetate was studied by use of picosecond flash photolysis. From both precursors, the retinyl cation is produced by heterolytic C-O bond cleavage in solvents of medium polarity (acetonitrile, tetrahydrofuran, propanol with Reichardt polarity parameter ET(N) approximately 0.5) and high polarity (EtOH, MeOH, TFE, HFIP, ET(N) > 0.6) during the laser pulse (< or =5 ps) where its lifetime is >10 ns. The absorption maximum of the cation at early times (t < 100 ps) is at lambda = 590-600 nm; it shifts to shorter wavelengths (Deltalambda = 5-10 nm) within 1-10 ns. This spectral shift is suggested to be due to contact ion pair --> solvent-separated ion pair --> free-ion transformation. The quantum yield of cation formation phi(cat) is independent of excitation wavelength (213, 266 or 355 nm). Photoheterolysis proceeds via a one-quantum process. In chlorinated solvents, i.e. n-BuCl, 1,2-dichloroethane, chloroform or CCl(4), formation of the retinol radical cation (which is characterized by a peak at 610 nm and further absorption maxima at approximately 840 and approximately 940 nm) by intermolecular electron transfer to the solvent molecules was detected. The radical cation lifetime in all these solvents is 1.5-2 ns, except for CCl(4) where it is 0.25 ns. The formation of the radical cation or cation was not detected in the low polarity solvents: cyclohexane, hexane, dioxane and p-xylene. However, in solvents of medium and high polarity, at high radiation intensities the radical cation may form in addition to the cation (as a result of two-quantum ionization). DFT calculations confirm our experimental results. The rate of retinol S(1) depopulation (k = 0.3-1 x 10(9) s(-1)) is almost independent of the solvent polarity in the range from cyclohexane to methanol. In highly polar solvents (ET(N) > 0.9) the rate increases to (0.5-5) x 10(10) s(-1).


Subject(s)
Lasers , Light , Photochemistry , Vitamin A/chemistry , 2-Propanol , Carbon Tetrachloride/chemistry , Cations, Monovalent/chemistry , Chloroform/chemistry , Ethanol/chemistry , Glycerol/chemistry , Organic Chemicals/chemistry , Vitamin A/radiation effects
3.
Chemphyschem ; 6(10): 2064-74, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16158459

ABSTRACT

Phenylurea herbicides undergo low-yield (phi(PI) <15 %) monophotonic photoionisation upon 193-nm laser flash excitation. The so-formed radical cations (phenylurea.+) are highly acidic (-1.5 < pKa <0.5) and deprotonate readily to yield the corresponding neutral radical (phenylurea.). Pulse radiolysis experiments allowed limitation of the reduction potential of phenylurea.+ within 2.22 V versus the normal hydrogen electrode (NHE) < E degrees (phenylurea.+/phenylurea) < 2.43 V versus NHE. The main photoproducts of UVC (lambda=193 nm) photodegradation of phenylureas correspond to a photo-Fries rearrangement. One-electron reduction with e-(aq) yields the corresponding radical anions (phenylurea.-), for which 4.3< pKa < 5.33. The rate constants for reaction with e-(aq) show that in photocatalysis the generation of phenylurea.- and O2.- on the surface of the photocatalyst may be competitive. High reactivity toward e-(aq) is predicted from linear free-energy relationships (LFER) for phenylureas bearing electron-withdrawing groups. Reaction with HO. takes place mainly via addition to the aromatic ring and/or H. abstraction from a saturated carbon atom (98 %), rather than one-electron oxidation (2 %). High reactivity toward oxidation by HO. is predicted from LFER for phenylureas bearing electron-donating groups. Adsorption studies for TiO2 in its polymorphic forms of rutile and anatase, as well as with the commercial mixture Degussa P-25, show photocatalysis is independent of the specific area of the catalyst. A variety of compounds are generated during the photocatalytic degradation of Diuron, while only two hydroxychloro derivatives are observed upon prolonged direct 365 nm irradiation. The photocatalytic degradation proceeds mainly by oxidation of the Me group of the side chain, hydroxylation of the aromatic ring, and dechlorination. The photoproducts of photocatalytic degradation differ from one polymorphic form of TiO2 to another.


Subject(s)
Herbicides , Phenylurea Compounds , Titanium/chemistry , Ultraviolet Rays , Adsorption , Catalysis , Chromatography, High Pressure Liquid , Herbicides/chemistry , Herbicides/radiation effects , Kinetics , Molecular Structure , Oxidation-Reduction , Phenylurea Compounds/chemistry , Phenylurea Compounds/radiation effects , Photochemistry
4.
Chemistry ; 11(4): 1294-304, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15635685

ABSTRACT

Radical cations were generated from different phenyl-substituted aziridines by pulse radiolysis in aqueous solution containing TlOH.+, N3. or SO4.- as oxidants or in n-butyl chloride, by 60Co gamma radiolysis in Freon matrices at 77 K, and in some cases by flash photolysis in aqueous solution. Depending on the substitution pattern of the aziridines, two different types of radical cations are formed: if the N atom carries a phenyl ring, the aziridine appears to retain its structure after oxidation and the resulting radical cation shows an intense band at 440-480 nm, similar to that of the radical cation of dimethylaniline. Conversely, if the N atom carries an alkyl substituent while a phenyl ring is attached to a C-atom of the aziridine, oxidation results in spontaneous ring opening to yield azomethine ylide radical cations which have broad absorptions in the 500-800 nm range. In aqueous solution the two types of radical cations are quenched by O2 with different rates, whereas in n-butyl chloride, the ring-closed aziridine radical cations are not quenchable by O2. The results of quantum chemical calculations confirm the assignment of these species and allow to rationalize the different effects that phenyl rings have if they are attached in different positions of aziridines. In the pulse radiolysis experiments in aqueous solution, the primary oxidants can also be observed, whereas in n-butyl chloride a transient at 325 nm remains unidentified. In the laser flash experiments, both types of radical cations were also observed.


Subject(s)
Aziridines/chemistry , Benzene Derivatives/chemistry , Aziridines/radiation effects , Benzene Derivatives/radiation effects , Cations/chemistry , Free Radicals/chemistry , Free Radicals/radiation effects , Gamma Rays , Molecular Structure , Photolysis , Quantum Theory , Temperature
5.
Phys Chem Chem Phys ; 7(4): 659-65, 2005 Feb 21.
Article in English | MEDLINE | ID: mdl-19787883

ABSTRACT

The electron affinity and the subsequent proton affinity of the electron adducts of 2-aminopurine (abbreviated 2AP) and adenine (A) are calculated with density functional theory (DFT). According to these calculations 2AP*- and A*- have similar thermochemical parameters leading to the conclusion that their reaction pathways should be close to analogous. Using the pulse radiolysis technique 2AP*- is formed by reaction with the hydrated electron (e(-)aq) and the resulting transient absorption spectrum is assigned to 2AP(NH)*. Additionally, it was found, employing the laser flash photolysis technique, that the excited singlet state of 2AP is incapable of oxidizing guanine in the aqueous phase. However, the one-electron oxidized 2AP (2AP*+) has sufficient energy to ionize guanine according to the DFT results in agreement with experimental data from the literature.


Subject(s)
2-Aminopurine/chemistry , Computer Simulation , Electrons , Models, Chemical , Water/chemistry , Crystallography, X-Ray , Free Radicals/chemistry , Lasers , Molecular Structure , Pulse Radiolysis
6.
Photochem Photobiol Sci ; 3(11-12): 990-1, 2004.
Article in English | MEDLINE | ID: mdl-15570384

ABSTRACT

The radical cations of 1-butyl-trans-2,3-diphenyl aziridine (1), 1-butyl-2-phenyl aziridine (2), 1,2-diphenyl aziridine (3) and 1-(p-methoxyphenyl)-2-phenyl aziridine (4) were generated upon laser flash photolysis in aqueous and aqueous acetonitrile solutions by direct photoionisation as indicated by the broad absorption band of the solvated electron above 550 nm as well.


Subject(s)
Aziridines/chemistry , Aziridines/radiation effects , Cations , Free Radicals , Photolysis
7.
Org Biomol Chem ; 2(4): 578-84, 2004 Feb 21.
Article in English | MEDLINE | ID: mdl-14770237

ABSTRACT

Using the Density Functional Theory method, the effect of hydrogen bonding between imidazole (IM) and ten benzyl alcohol derivatives (BA) on the ionization potentials of the latter is calculated. IM is used as a model for histidine, which is found in the reaction sites of laccases and lignin peroxidases, and the BA-derivatives serve as lignin model compounds. A marked decrease ([similar]15 kcal mol(-1)) is found for the IP's of the BA-derivatives when paired with IM. This should facilitate the one-electron oxidation of BA in the reaction site of the enzyme. The same effect is found for the known redox mediators violuric acid, 1-hydroxybenzotriazole and N-hydroxyacetanilide which are assumed to enter the reaction site of the enzymes. Furthermore, upon one-electron oxidation the strength of the H-bond from BA to IM is considerably increased and in the case of the mediators this effect is so pronounced that the relevant proton shifts from them to IM. If this occurs in the active site of the enzyme then the oxidized redox mediators are released into the aqueous phase in their neutral form rather than as radical cations (deprotonation of the radical cations). The oxidation power of the neutral radical mediators, however, is too low to initialize oxidation of lignin. A more likely reaction pathway is oxidation of the substrates via hydrogen abstraction. The pertinent bond dissociation energies are similar for the BA-derivatives and the redox mediators, which in principle allows the reaction to occur.


Subject(s)
Histidine/chemistry , Lignin/chemistry , Dimerization , Hydrogen Bonding , Ions/chemistry , Models, Molecular , Molecular Structure , Oxidation-Reduction
8.
Chemistry ; 9(12): 2819-33, 2003 Jun 16.
Article in English | MEDLINE | ID: mdl-12866548

ABSTRACT

Terpyridine ligands of the type Fc'-X-tpy (Fc'=ferrocenyl or octamethylferrocenyl, X=rigid spacer, tpy'=4'-substituted 2,2':6',2''-terpyridine) were prepared, crystallographically characterised and used for the synthesis of di- and trinuclear bis(terpyridine) complexes of RuII, FeII and ZnII. Donor-sensitiser dyads and triads based on RuII were thoroughly investigated by (spectro)electrochemistry, UV/Vis, transient absorption and luminescence spectroscopy, and an energy level scheme was derived on the basis of the data collected. Intramolecular quenching of the photoexcited RuII complexes by the redox-active Fc' groups can occur reductively and by energy transfer. Both the redox potential of the donor Fc' and the nature of the spacer X have a decisive influence on excited-state lifetimes and emission properties of the complexes. Some of the compounds show room-temperature luminescence, which is unprecedented for ferrocenyl-functionalised compounds of this kind.

9.
Free Radic Res ; 37(10): 1043, 2003.
Article in English | MEDLINE | ID: mdl-27687180
10.
J Org Chem ; 67(7): 2266-70, 2002 Apr 05.
Article in English | MEDLINE | ID: mdl-11925239

ABSTRACT

A laser flash photolysis study of the spectral properties and beta-scission reactions of a series of ring-substituted cumyloxyl radicals has been carried out. All cumyloxyl radicals display a broad absorption band in the visible region of the spectrum, which decays on the microsecond time scale, leading to a strong increase in absorption in the UV region of the spectrum, which is attributed to the corresponding acetophenone formed after beta-scission of the cumyloxyl radicals. The position of the visible absorption band is red-shifted by the presence of electron-donating ring substituents, while a blue-shift is observed in the presence of electron-withdrawing ring substituents, suggesting that + R ring substituents promote charge separation in the excited cumyloxyl radical through stabilization of the partial positive charge on the aromatic ring of an incipient radical zwitterion. Along this line, an excellent Hammett-type correlation between the experimentally measured energies at the visible absorption maxima of the cumyloxyl radicals and sigma(+) substituent constants is obtained. A red-shift is also observed on going from MeCN to MeCN/H(2)O for all cumyloxyl radicals, pointing toward a specific effect of water. The ring substitution does not influence to a significant extent the rate constants for beta-scission of the cumyloxyl radicals, which varies between 7.1 x 10(5) and 1.1 x 10(6) s(-1), a result that suggests that cumyloxyl radical beta-scission is not governed by the stability of the resulting acetophenone. Finally, k(beta) increases on going from MeCN to the more polar MeCN/H(2)O 1:1 for all cumyloxyl radicals, an observation that reflects the increased stabilization of the transition state for beta-scission through increased solvation of the incipient acetophenone product.

SELECTION OF CITATIONS
SEARCH DETAIL
...