Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Parasitol ; 105(4): 546-554, 2019 08.
Article in English | MEDLINE | ID: mdl-31348718

ABSTRACT

Parasites can affect animal populations and communities in aquatic ecosystems. However, greater understanding is needed for the distributions and drivers of parasite infection levels in many areas. This study focuses on parasite prevalence (percent infected hosts) of an important class of parasites, trematodes, in 2 species of snail first intermediate hosts (Planorbella trivolvis and Physa sp.) in the Illinois River watershed, which has been impacted by human development. We hypothesized that trematode prevalence depends on local (e.g., water chemistry) and landscape (e.g., proximity to the Illinois River and land cover) factors. To test our hypotheses, we collected at least 20 individuals of 1 or both species of snails from 28 ponds within the watershed, and we made water-quality measurements and recorded habitat characteristics at each site. We then screened the snails for infections in the laboratory and identified the trematode cercariae that emerged based on morphological and molecular techniques. We found 5 cercariae morphotypes, including important parasites of wildlife, such as Echinostoma sp. and Ribeiroia ondatrae. Our results indicate that proximity to the Illinois River and open water or wetlands was positively associated with trematode prevalence in both snail species, whereas water chemistry (higher pH, lower calcium concentration, and lower specific conductance) was associated with increased prevalence, but only in Physa. Our findings offer increased understanding of potential environmental drivers underlying trematode distributions, with implications for wildlife health.


Subject(s)
Ponds/parasitology , Snails/parasitology , Trematoda/isolation & purification , Water/chemistry , Animals , Cercaria/genetics , Cercaria/isolation & purification , Ecosystem , Hydrogen-Ion Concentration , Illinois , Rivers , Trematoda/genetics , Water/parasitology , Water/standards , Wetlands
2.
Curr Zool ; 65(6): 657-664, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32440271

ABSTRACT

Spatial distributions of animals can affect interactions with their natural enemies, such as parasites, and thus have important implications for host-parasite dynamics. While spatial variation in infection risk has been explored in many systems at the landscape scale, less attention has been paid to spatial structure at smaller scales. Here, we explore a hypothesized relationship between a common spatial variable, vertical position, and risk of parasite infection in a model aquatic system, larval frogs (Rana) and trematode (Digenea) parasites. Vertical position is relevant to this system given evidence that the densities of snail first intermediate hosts, tadpole second intermediate hosts, and trematode infective stages can vary with depth. To test the effects of depth on infection risk of larval frogs by trematodes, we performed two enclosure experiments, one in the laboratory and one in the field, in which larval frogs in cages just below the water surface or near the bottom of the water column were exposed to parasites. Compared with near-surface cages, mean infection load (number of cysts) in tadpoles in near-bottom cages was 83% higher after 48-h exposures in the laboratory and 730% higher after 10-day exposures in the field. Our findings thus indicate that infection risk depends on depth, which may have adaptive significance, as tadpoles have previously been shown to change vertical position in response to parasite presence. These results motivate future work examining vertical variation in infection risk and may have broader implications for host-parasite dynamics and evolution of host and parasite behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...