Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19454, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376339

ABSTRACT

There is increasing genetic evidence for the role of microglia in neurodegenerative diseases, including Alzheimer's, Parkinson's, and motor neuron disease. Therefore, there is a need to generate authentic in vitro models to study human microglial physiology. Various methods have been developed using human induced Pluripotent Stem Cells (iPSC) to generate microglia, however, systematic approaches to identify which media components are actually essential for functional microglia are mostly lacking. Here, we systematically assess medium components, coatings, and growth factors required for iPSC differentiation to microglia. Using single-cell RNA sequencing, qPCR, and functional assays, with validation across two labs, we have identified several medium components from previous protocols that are redundant and do not contribute to microglial identity. We provide an optimised, defined medium which produces both transcriptionally and functionally relevant microglia for modelling microglial physiology in neuroinflammation and for drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Microglia/metabolism , Transcriptome , Cell Differentiation/genetics , Neurodegenerative Diseases/metabolism
2.
Nat Genet ; 53(3): 304-312, 2021 03.
Article in English | MEDLINE | ID: mdl-33664506

ABSTRACT

Studying the function of common genetic variants in primary human tissues and during development is challenging. To address this, we use an efficient multiplexing strategy to differentiate 215 human induced pluripotent stem cell (iPSC) lines toward a midbrain neural fate, including dopaminergic neurons, and use single-cell RNA sequencing (scRNA-seq) to profile over 1 million cells across three differentiation time points. The proportion of neurons produced by each cell line is highly reproducible and is predictable by robust molecular markers expressed in pluripotent cells. Expression quantitative trait loci (eQTL) were characterized at different stages of neuronal development and in response to rotenone-induced oxidative stress. Of these, 1,284 eQTL colocalize with known neurological trait risk loci, and 46% are not found in the Genotype-Tissue Expression (GTEx) catalog. Our study illustrates how coupling scRNA-seq with long-term iPSC differentiation enables mechanistic studies of human trait-associated genetic variants in otherwise inaccessible cell states.


Subject(s)
Dopaminergic Neurons/cytology , Dopaminergic Neurons/physiology , Induced Pluripotent Stem Cells/cytology , Quantitative Trait Loci , Transcriptome , Cell Differentiation/genetics , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/physiology , Neurogenesis/genetics , Oxidative Stress/drug effects , Receptor, Fibroblast Growth Factor, Type 1/genetics , Rotenone/toxicity , Sequence Analysis, RNA , Single-Cell Analysis
3.
Nat Biotechnol ; 36(4): 328-337, 2018 04.
Article in English | MEDLINE | ID: mdl-29553577

ABSTRACT

Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)-derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.


Subject(s)
Human Embryonic Stem Cells/transplantation , Macular Degeneration/therapy , Retinal Pigment Epithelium/transplantation , Visual Acuity/physiology , Aged , Animals , Basement Membrane/diagnostic imaging , Basement Membrane/growth & development , Cell Differentiation/genetics , Female , Humans , Macular Degeneration/diagnostic imaging , Macular Degeneration/pathology , Male , Mice , Middle Aged , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/growth & development , Stem Cell Transplantation/adverse effects , Swine , Tomography, Optical Coherence
4.
Stem Cells Transl Med ; 6(2): 490-501, 2017 02.
Article in English | MEDLINE | ID: mdl-28191760

ABSTRACT

Development of efficient and reproducible conditions for directed differentiation of pluripotent stem cells into specific cell types is important not only to understand early human development but also to enable more practical applications, such as in vitro disease modeling, drug discovery, and cell therapies. The differentiation of stem cells to retinal pigment epithelium (RPE) in particular holds promise as a source of cells for therapeutic replacement in age-related macular degeneration. Here we show development of an efficient method for deriving homogeneous RPE populations in a period of 45 days using an adherent, monolayer system and defined xeno-free media and matrices. The method utilizes sequential inhibition and activation of the Activin and bone morphogenetic protein signaling pathways and can be applied to both human embryonic stem cells and induced pluripotent stem cells as the starting population. In addition, we use whole genome transcript analysis to characterize cells at different stages of differentiation that provides further understanding of the developmental dynamics and fate specification of RPE. We show that with the described method, RPE develop through stages consistent with their formation during embryonic development. This characterization- together with the absence of steps involving embryoid bodies, three-dimensional culture, or manual dissections, which are common features of other protocols-makes this process very attractive for use in research as well as for clinical applications. Stem Cells Translational Medicine 2017;6:490-501.


Subject(s)
Cell Differentiation , Cell Lineage , Cellular Reprogramming Techniques , Cellular Reprogramming , Epithelial Cells/physiology , Induced Pluripotent Stem Cells/physiology , Retinal Pigment Epithelium/physiology , Activins/antagonists & inhibitors , Activins/metabolism , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Phenotype , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Signal Transduction , Time Factors , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...