Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(6): eaar6444, 2018 06.
Article in English | MEDLINE | ID: mdl-29963626

ABSTRACT

Measurements on a quantum particle unavoidably affect its state, since the otherwise unitary evolution of the system is interrupted by a nonunitary projection operation. To probe measurement-induced effects in the state dynamics using a quantum simulator, the challenge is to implement controlled measurements on a small subspace of the system and continue the evolution from the complementary subspace. A powerful platform for versatile quantum evolution is represented by photonic quantum walks because of their high control over all relevant parameters. However, measurement-induced dynamics in such a platform have not yet been realized. We implement controlled measurements in a discrete-time quantum walk based on time-multiplexing. This is achieved by adding a deterministic outcoupling of the optical signal to include measurements constrained to specific positions resulting in the projection of the walker's state on the remaining ones. With this platform and coherent input light, we experimentally simulate measurement-induced single-particle quantum dynamics. We demonstrate the difference between dynamics with only a single measurement at the final step and those including measurements during the evolution. To this aim, we study recurrence as a figure of merit, that is, the return probability to the walker's starting position, which is measured in the two cases. We track the development of the return probability over 36 time steps and observe the onset of both recurrent and transient evolution as an effect of the different measurement schemes, a signature which only emerges for quantum systems. Our simulation of the observed one-particle conditional quantum dynamics does not require a genuine quantum particle but is demonstrated with coherent light.

2.
Science ; 336(6077): 55-8, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22403179

ABSTRACT

Multidimensional quantum walks can exhibit highly nontrivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a two-dimensional (2D) optical quantum walk on a lattice, demonstrating a scalable quantum walk on a nontrivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions by using an optical fiber network. With our broad spectrum of quantum coins, we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong nonlinearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...