Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
ACS Sens ; 9(3): 1049-1064, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38482790

ABSTRACT

The development of efficient nanoscale photon absorbers, such as plasmonic or high-index dielectric nanostructures, allows the remotely controlled release of heat on the nanoscale using light. These photothermal nanomaterials have found applications in various research and technological fields, ranging from materials science to biology. However, measuring the nanoscale thermal fields remains an open challenge, hindering full comprehension and control of nanoscale photothermal phenomena. Here, we review and discuss existent thermometries suitable for single nanoparticles heated under illumination. These methods are classified in four categories according to the region where they assess temperature: (1) the average temperature within a diffraction-limited volume, (2) the average temperature at the immediate vicinity of the nanoparticle surface, (3) the temperature of the nanoparticle itself, and (4) a map of the temperature around the nanoparticle with nanoscale spatial resolution. In the latter, because it is the most challenging and informative type of method, we also envisage new combinations of technologies that could be helpful in retrieving nanoscale temperature maps. Finally, we analyze and provide examples of strategies to validate the results obtained using different thermometry methods.


Subject(s)
Nanoparticles , Nanostructures , Hot Temperature , Nanoparticles/chemistry , Nanostructures/chemistry , Temperature
2.
Nat Commun ; 14(1): 3813, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37369657

ABSTRACT

Localized surface plasmons are lossy and generate heat. However, accurate measurement of the temperature of metallic nanoparticles under illumination remains an open challenge, creating difficulties in the interpretation of results across plasmonic applications. Particularly, there is a quest for understanding the role of temperature in plasmon-assisted catalysis. Bimetallic nanoparticles combining plasmonic with catalytic metals are raising increasing interest in artificial photosynthesis and the production of solar fuels. Here, we perform single-particle thermometry measurements to investigate the link between morphology and light-to-heat conversion of colloidal Au/Pd nanoparticles with two different configurations: core-shell and core-satellite. It is observed that the inclusion of Pd as a shell strongly reduces the photothermal response in comparison to the bare cores, while the inclusion of Pd as satellites keeps photothermal properties almost unaffected. These results contribute to a better understanding of energy conversion processes in plasmon-assisted catalysis.

3.
Small Methods ; 7(7): e2201565, 2023 07.
Article in English | MEDLINE | ID: mdl-37132097

ABSTRACT

Fluorescence Resonance Energy Transfer (FRET)-based approaches are unique tools for sensing the immediate surroundings and interactions of (bio)molecules. FRET imaging and Fluorescence Lifetime Imaging Microscopy (FLIM) enable the visualization of the spatial distribution of molecular interactions and functional states. However, conventional FLIM and FRET imaging provide average information over an ensemble of molecules within a diffraction-limited volume, which limits the spatial information, accuracy, and dynamic range of the observed signals. Here, an approach to obtain super-resolved FRET imaging based on single-molecule localization microscopy using an early prototype of a commercial time-resolved confocal microscope is demonstrated. DNA Points Accumulation for Imaging in Nanoscale Topography with fluorogenic probes provides a suitable combination of background reduction and binding kinetics compatible with the scanning speed of usual confocal microscopes. A single laser is used to excite the donor, a broad detection band is employed to retrieve both donor and acceptor emission, and FRET events are detected from lifetime information.


Subject(s)
DNA , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , DNA/chemistry , Microscopy, Confocal , Single Molecule Imaging
4.
Nano Lett ; 23(7): 2703-2709, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36952678

ABSTRACT

Obtaining arrays of single nanoparticles with three-dimensional complex shapes is still an open challenge. Current nanolithography methods do not allow for the preparation of nanoparticles with complex features like nanostars. In this work, we investigate the optical printing of gold nanostars of different sizes as a function of laser wavelength and power. We found that tuning the laser to the main resonances of the nanostars in the near-infrared makes it possible to avoid nanoparticles reshaping due to plasmonic heating, enabling their deposition at the single particle level and in ordered arrays.

5.
Biophys Rep (N Y) ; 2(1): 100036, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-36425082

ABSTRACT

Localization of single fluorescent molecules is key for physicochemical and biophysical measurements, such as single-molecule tracking and super-resolution imaging by single-molecule localization microscopy. Over the last two decades, several methods have been developed in which the position of a single emitter is interrogated with a sequence of spatially modulated patterns of light. Among them, the recent MINFLUX technique outstands for achieving a ∼10-fold improvement compared with wide-field camera-based single-molecule localization, reaching ∼1-2 nm localization precision at moderate photon counts. Here, we present a common framework for this type of measurement. Using the Cramér-Rao bound as a limit for the achievable localization precision, we benchmark reported methods, including recent developments, such as MINFLUX and MINSTED, and long-established methods, such as orbital tracking. In addition, we characterize two new proposed schemes, orbital tracking and raster scanning, with a minimum of intensity. Overall, we found that approaches using an intensity minimum have a similar performance in the central region of the excitation pattern, independent of the geometry of the excitation pattern, and that they outperform methods featuring an intensity maximum.

6.
ACS Nano ; 16(10): 16924-16931, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36065997

ABSTRACT

An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge. Here, we show how single molecules, namely, Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving unpaired bases in the scaffold. Increasing the number of bases unpaired induces a stretching of the fluorophore linkers, reducing its mobility freedom, and leaves more space for the fluorophore to accommodate and find different sites for interaction with the DNA. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 bases unpaired and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double-helix, respectively. We foresee that these results will expand the application field of DNA origami toward the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nanoantenna modes.


Subject(s)
Nanoparticles , Nanotechnology , Nanotechnology/methods , DNA/chemistry , Oligonucleotides , Fluorescent Dyes/chemistry
8.
Nano Lett ; 22(15): 6402-6408, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35875900

ABSTRACT

Optical antennas are nanostructures designed to manipulate light-matter interactions by interfacing propagating light with localized optical fields. In recent years, numerous devices have been realized to efficiently tailor the absorption and/or emission rates of fluorophores. By contrast, modifying the spatial characteristics of their radiation fields remains challenging. Successful phased array nanoantenna designs have required the organization of several elements over a footprint comparable to the operating wavelength. Here, we report unidirectional emission of a single fluorophore using an ultracompact optical antenna. The design consists of two side-by-side gold nanorods self-assembled via DNA origami, which also controls the positioning of the single-fluorophore. Our results show that when a single fluorescent molecule is positioned at the tip of one nanorod and emits at a frequency capable of driving the antenna in the antiphase mode, unidirectional emission with a forward to backward ratio of up to 9.9 dB can be achieved.


Subject(s)
Nanostructures , Nanotechnology , DNA/chemistry , Fluorescent Dyes , Gold/chemistry , Nanostructures/chemistry
9.
Light Sci Appl ; 11(1): 199, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773265

ABSTRACT

Localization of single fluorescent emitters is key for physicochemical and biophysical measurements at the nanoscale and beyond ensemble averaging. Examples include single-molecule tracking and super-resolution imaging by single-molecule localization microscopy. Among the numerous localization methods available, MINFLUX outstands for achieving a ~10-fold improvement in resolution over wide-field camera-based approaches, reaching the molecular scale at moderate photon counts. Widespread application of MINFLUX and related methods has been hindered by the technical complexity of the setups. Here, we present RASTMIN, a single-molecule localization method based on raster scanning a light pattern comprising a minimum of intensity. RASTMIN delivers ~1-2 nm localization precision with usual fluorophores and is easily implementable on a standard confocal microscope with few modifications. We demonstrate the performance of RASTMIN in localization of single molecules and super-resolution imaging of DNA origami structures.

10.
Light Sci Appl ; 11(1): 70, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35332123

ABSTRACT

Using sequential excitation with a minimum of light to localize single fluorescent molecules represented a breakthrough because it delivers 1-2 nm precision with moderate photon counts, enabling tracking and super-resolution imaging with true molecular resolution. Expanding this concept to multi-photon regimes may be a useful complement to reach even higher localization precision and get deeper into biological specimens.

11.
J Chem Phys ; 156(3): 034201, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35065575

ABSTRACT

While colloidal chemistry provides ways to obtain a great variety of nanoparticles with different shapes, sizes, material compositions, and surface functions, their controlled deposition and combination on arbitrary positions of substrates remain a considerable challenge. Over the last ten years, optical printing arose as a versatile method to achieve this purpose for different kinds of nanoparticles. In this article, we review the state of the art of optical printing of single nanoparticles and discuss its strengths, limitations, and future perspectives by focusing on four main challenges: printing accuracy, resolution, selectivity, and nanoparticle photostability.

12.
Nanoscale ; 13(44): 18421-18433, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34739534

ABSTRACT

Super-resolution fluorescence microscopy and Förster Resonance Energy Transfer (FRET) form a well-established family of techniques that has provided unique tools to study the dynamic architecture and functionality of biological systems, as well as to investigate nanomaterials. In the last years, the integration of super-resolution methods with FRET measurements has generated advances in two fronts. On the one hand, FRET-based probes have enhanced super-resolution imaging. On the other, the development of super-resolved FRET imaging methods has allowed the visualization of molecular interaction patterns with higher spatial resolution, less averaging and higher dynamic range. Here, we review these advances and discuss future perspectives, including the possible integration of FRET with next generation super-resolution techniques capable of reaching true molecular-scale spatial resolution.


Subject(s)
Fluorescence Resonance Energy Transfer , Microscopy, Fluorescence
13.
ACS Nano ; 15(3): 5109-5117, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33660975

ABSTRACT

We present a technique to determine the orientation of single fluorophores attached to DNA origami structures based on two measurements. First, the orientation of the absorption transition dipole of the molecule is determined through a polarization-resolved excitation measurement. Second, the orientation of the DNA origami structure is obtained from a DNA-PAINT nanoscopy measurement. Both measurements are performed consecutively on a fluorescence wide-field microscope. We employed this approach to study the orientation of single ATTO 647N, ATTO 643, and Cy5 fluorophores covalently attached to a 2D rectangular DNA origami structure with different nanoenvironments, achieved by changing both the fluorophores' binding position and immediate vicinity. Our results show that when fluorophores are incorporated with additional space, for example, by omitting nucleotides in an elsewise double-stranded environment, they tend to stick to the DNA and to adopt a preferred orientation that depends more on the specific molecular environment than on the fluorophore type. With the aid of all-atom molecular dynamics simulations, we rationalized our observations and provide insight into the fluorophores' probable binding modes. We believe this work constitutes an important step toward manipulating the orientation of single fluorophores in DNA origami structures, which is vital for the development of more efficient and reproducible self-assembled nanophotonic devices.


Subject(s)
DNA , Fluorescent Dyes , Microscopy, Fluorescence , Molecular Dynamics Simulation
14.
Nano Lett ; 21(5): 2296-2303, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33621102

ABSTRACT

Förster resonance energy transfer (FRET) imaging methods provide unique insight into the spatial distribution of energy transfer and (bio)molecular interaction events, though they deliver average information for an ensemble of events included in a diffraction-limited volume. Coupling super-resolution fluorescence microscopy and FRET has been a challenging and elusive task. Here, we present STED-FRET, a method of general applicability to obtain super-resolved energy transfer images. In addition to higher spatial resolution, STED-FRET provides a more accurate quantification of interaction and has the capacity of suppressing contributions of noninteracting partners, which are otherwise masked by averaging in conventional imaging. The method capabilities were first demonstrated on DNA-origami model systems, verified on uniformly double-labeled microtubules, and then utilized to image biomolecular interactions in the membrane-associated periodic skeleton (MPS) of neurons.

15.
Nat Commun ; 12(1): 517, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483489

ABSTRACT

Single-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule's image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope. SIMPLER requires no hardware modification whatsoever to a conventional total internal reflection fluorescence microscope and complements any 2D single-molecule localization microscopy method to deliver 3D images with nearly isotropic nanometric resolution. Performance examples include SIMPLER-direct stochastic optical reconstruction microscopy images of the nuclear pore complex with sub-20 nm axial localization precision and visualization of microtubule cross-sections through SIMPLER-DNA points accumulation for imaging in nanoscale topography with sub-10 nm axial localization precision.


Subject(s)
Fluorescence , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Nanotechnology/methods , Single Molecule Imaging/methods , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , DNA/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Humans , Image Processing, Computer-Assisted/methods , Mice , Microtubules/metabolism , Photometry/methods
16.
Nano Lett ; 21(1): 840-846, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33336573

ABSTRACT

We introduce p-MINFLUX, a new implementation of the highly photon-efficient single-molecule localization method with a simplified experimental setup and additional fluorescence lifetime information. In contrast to the original MINFLUX implementation, p-MINFLUX uses interleaved laser pulses to deliver the doughnut-shaped excitation foci at a maximum repetition rate. Using both static and dynamic DNA origami model systems, we demonstrate the performance of p-MINFLUX for single-molecule localization nanoscopy and tracking, respectively. p-MINFLUX delivers 1-2 nm localization precision with 2000-1000 photon counts. In addition, p-MINFLUX gives access to the fluorescence lifetime enabling multiplexing and super-resolved lifetime imaging. p-MINFLUX should help to unlock the full potential of innovative single-molecule localization schemes.


Subject(s)
Nanotechnology , Photons , DNA , Lasers , Microscopy, Fluorescence
17.
ACS Nano ; 15(2): 2458-2467, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-32941001

ABSTRACT

Several fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media. With it, we first studied the photothermal response of spherical gold NPs of different sizes on glass substrates, immersed in water, and found that heat dissipation is mainly dominated by the water for NPs larger than 50 nm. Then, the role of the substrate was studied by comparing the photothermal response of 80 nm gold NPs on glass with sapphire and graphene, two materials with high thermal conductivity. For a given irradiance level, the NPs reach temperatures 18% lower on sapphire and 24% higher on graphene than on bare glass. The fact that the presence of a highly conductive material such as graphene leads to a poorer thermal dissipation demonstrates that interfacial thermal resistances play a very significant role in nanoscopic systems and emphasize the need for in situ experimental thermometry techniques. The developed method will allow addressing several open questions about the role of temperature in plasmon-assisted applications, especially ones where NPs of arbitrary shapes are present in complex matrixes and environments.

18.
Biophys Rev ; 13(6): 1101-1112, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35059030

ABSTRACT

Fluorescence nanoscopy represented a breakthrough for the life sciences as it delivers 20-30 nm resolution using far-field fluorescence microscopes. This resolution limit is not fundamental but imposed by the limited photostability of fluorophores under ambient conditions. This has motivated the development of a second generation of fluorescence nanoscopy methods that aim to deliver sub-10 nm resolution, reaching the typical size of structural proteins and thus providing true molecular resolution. In this review, we present common fundamental aspects of these nanoscopies, discuss the key experimental factors that are necessary to fully exploit their capabilities, and discuss their current and future challenges.

19.
Nanoscale ; 12(17): 9495-9506, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32313910

ABSTRACT

Single Molecule Localization Microscopy (SMLM) currently attains a lateral resolution of around 10 nm approaching molecular size. Together with increasingly specific fluorescent labeling, it opens the possibility to quantitatively analyze molecular organization. When the labeling density is high enough, SMLM provides clear images of the molecular organization. However, either due to limited labeling efficiency or due to intrinsically low molecular abundance, SMLM delivers a small set of sparse and highly precise localizations. In this work, we introduce a correlation analysis of molecular locations based on the functional dependence of the complementary cumulative distribution function (CCDF) of the distance to the first neighbor (r1). We demonstrate that the log(-log(CCDF(r1))) vs. log(r1) is characterized by a scaling exponent n that takes extreme values of 2 for a random 2D distribution and 1 for a strictly linear arrangement, and find that n is a robust and sensitive metric to distinguish characteristics of the underlying structure responsible for the molecular distribution, even at a very low labeling density. The method enables the detection of fibrillary organization and the estimation of the diameter of host fibers under conditions where a visual inspection provides no clue.

20.
Sci Rep ; 10(1): 2917, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32076054

ABSTRACT

Fluorescent nanoscopy approaches have been used to characterize the periodic organization of actin, spectrin and associated proteins in neuronal axons and dendrites. This membrane-associated periodic skeleton (MPS) is conserved across animals, suggesting it is a fundamental component of neuronal extensions. The nanoscale architecture of the arrangement (190 nm) is below the resolution limit of conventional fluorescent microscopy. Fluorescent nanoscopy, on the other hand, requires costly equipment and special analysis routines, which remain inaccessible to most research groups. This report aims to resolve this issue by using protein-retention expansion microscopy (pro-ExM) to reveal the MPS of axons. ExM uses reagents and equipment that are readily accessible in most neurobiology laboratories. We first explore means to accurately estimate the expansion factors of protein structures within cells. We then describe the protocol that produces an expanded specimen that can be examined with any fluorescent microscopy allowing quantitative nanoscale characterization of the MPS. We validate ExM results by direct comparison to stimulated emission depletion (STED) nanoscopy. We conclude that ExM facilitates three-dimensional, multicolor and quantitative characterization of the MPS using accessible reagents and conventional fluorescent microscopes.


Subject(s)
Axons/metabolism , Microscopy, Fluorescence/methods , Spectrin/metabolism , Animals , Calibration , Cell Membrane/metabolism , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Rats, Wistar , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...