Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38201724

ABSTRACT

Brewer's spent grain (BSG) is the main solid waste generated in beer production and primarily consists of barley malt husks. Based on the active promotion of circular economy practices aimed at recycling food industry by-products, this study assessed for the first time the production of particleboards based on BSG as the sole source of lignocellulosic material and natural adhesive without the use of additives or other substrates. In order to achieve particleboards from entirely sustainable sources, BSG particles have to self-bind by thermo-compression with water. In this context, the aim of this study is to assess the effects of pressing temperatures and particle size on properties such as modulus of elasticity, modulus of rupture, internal bond, thickness swelling, and water absorption. The performance of binderless boards was compared with that of a control panel (control) using BSG combined with phenolic resin. Processing conditions were selected to produce boards with a target density of 1000 kg/m³ and a thickness of 5 mm. To confirm the efficiency of the self-adhesion process, scanning electron microscopy was used to examine the boards. The processes of self-adhesion and particle-to-particle contact were facilitated at a pressing temperature of 170 °C and a particle size range of 200-2380 µm (ground BSG), resulting in improved flexural properties and enhanced water resistance. The properties of BSG-based binderless boards were comparable to those reported for other biomass residues, suggesting that they might be used in non-structural applications, such as interior decoration.

2.
Polymers (Basel) ; 14(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501592

ABSTRACT

Cellulose crystallinity can be described according to the crystal size and the crystallinity index (CI). In this research, using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods, we studied the crystallinity of three different types of cellulose: banana rachis (BR), commercial cellulose (CS), and bacterial cellulose (BC). For each type of cellulose, we analyzed three different crystallization grades. These variations were obtained using three milling conditions: 6.5 h, 10 min, and unmilled (films). We developed a code in MATLAB software to perform deconvolution of the XRD data to estimate CI and full width at half-maximum (FWHM). For deconvolution, crystalline peaks were represented with Voigt functions, and a Fourier series fitted to the amorphous profile was used as the amorphous contribution, which allowed the contribution of the amorphous profile to be more effectively modeled. Comparisons based on the FTIR spectra and XRD results showed there were no compositional differences between the amorphous samples. However, changes associated with crystallinity were observed when the milling time was 10 min. The obtained CI (%) values show agreement with values reported in the literature and confirm the effectiveness of the method used in this work in predicting the crystallization aspects of cellulose samples.

3.
Polymers (Basel) ; 13(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685299

ABSTRACT

The aim of this research was to prepare an antifungal soybean protein concentrate (SPC) adhesive containing carvacrol (CRV) as a bioactive agent able to delay the attack of molds and yeast during storage of SPC adhesive at 4 °C as water-based systems. CRV was incorporated in SPC slurry at 0.5% v/v (~10 times its minimum inhibitory concentration against Aspergillus terreus, used as model fungus), to ensure its long-term action. CRV scarcely altered the thermal properties, structure and apparent viscosity of SPC adhesive. Active SPC aqueous dispersion was microbiologically stable for at least 30 days at 4 °C where the colonization begins, while control SPC was visually colonized from the second day. Rice husk (RH) particleboards of density ~900 kg/m3 were manufactured using the active SPC stored for 0, 10, 20, and 30 days as a binder. Modulus of elasticity, modulus of rupture and internal bond of RH-control SPC (without CRV) panels were 12.3 MPa, 2.65 GPa and 0.27 MPa, respectively, and were statistically unaltered compared with those obtained with fresh SPC, regardless of the presence of CRV or the storage time. This last implies that active SPC should not necessarily have to be prepared daily and/or be used immediately after its preparation. Since it is microbiologically stabilized, it can be store at least for 30 days, ensuring the stability of the protein. The quality of the adhesive was evidenced by the consistent properties of the adhesive, expanding its potential use and commercialization.

4.
Food Chem ; 243: 448-452, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29146364

ABSTRACT

Post-processing evolution of the functional properties of soybean protein concentrate (SPC) films, plasticized with varying levels of glycerol and processed by compression molding, was examined over a period of 90days. Films stored in the glassy state (25±2°C and 65±2% relative humidity) lost glycerol and water over time, as determined by gas chromatography and the decline in moisture content. SPC films plasticized with 40-50% glycerol showed a time-dependent increment of the elastic modulus and the tensile strength. In turn, the elongation, barrier properties, soluble mass and opacity of these films varied marginally with time. By contrast, films with 30% glycerol lost the most moisture and their elongation was reduced significantly, while water vapor permeability slightly increased with aging. The performance of aged films resulted from the balance between plasticizer and water loss, and the progressive replacement of unordered structures by intermolecular hydrogen bonded ß-sheets and aggregates.


Subject(s)
Soybean Proteins/chemistry , Elastic Modulus , Food Packaging/instrumentation , Glycerol/chemistry , Molecular Weight , Permeability , Plasticizers/chemistry , Steam/analysis , Tensile Strength
5.
Bioresour Technol ; 101(2): 818-25, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19766482

ABSTRACT

The main goal of this work was to evaluate the technical feasibility of using rice husk (RH) as wood substitute in the production of environmentally sound medium-density particleboards using adhesives from soybean protein concentrate (SPC). Chemical modification of rice husk with sodium hydroxide and sodium hydroxide followed by hydrogen peroxide (bleaching) were undertaken to evaluate the effect of such treatments on the composition and topology of rice husk and the performance of produced panels. Both treatments were efficient in partially eliminating hemicelluloses, lignin and silica from RH, as evidenced by thermo-gravimetric analysis (TGA). Scanning electron microscopy observations suggested that alkaline treatment resulted in a more damaged RH substrate than bleaching. The dependence of mechanical properties (modulus of rupture, modulus of elasticity, and internal bond) and the physical properties (water absorption and thickness swelling) on chemical treatments performed on both, rice husk and SPC was studied. Bleached-rice husk particleboards bonded with alkaline-treated soybean protein concentrate displayed the best set of final properties. Particleboards with this formulation met the minimum requirements of internal bond, modulus of elasticity and modulus of rupture recommended by the US Standard ANSI/A208.1 specifications for M1, MS and M2-grade medium-density particleboards, but failed to achieve the thickness swelling value recommended for general use panels. This limitation of soybean protein concentrate-bonded rice husk particleboards was counterbalanced by the advantage of being formaldehyde-free which makes them a suitable alternative for indoor applications.


Subject(s)
Adhesives , Glycine max , Oryza , Plant Proteins/chemistry , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...