Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(1): 134-144, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38152996

ABSTRACT

Gd-L1 is a macrocyclic Gd-HPDO3A derivative functionalized with a short spacer to a trisulfonated pyrene. When compared to Gd-HPDO3A, the increased relaxivity appears to be determined by both the higher molecular weight and the occurrence of an intramolecularly catalyzed prototropic exchange of the coordinated OH moiety. In water, Gd-L1 displayed a relaxivity of 7.1 mM-1 s-1 (at 298 K and 0.5 T), slightly increasing with the concentration likely due to the onset of intermolecular aggregation. A remarkably high and concentration-dependent relaxivity was measured in human serum (up to 26.5 mM-1 s-1 at the lowest tested concentration of 0.005 mM). The acquisition of 1H-nuclear magnetic relaxation dispersion (NMRD) and 17O-R2 vs T profiles allowed to get an in-depth characterization of the system. In vitro experiments in the presence of human serum albumin, γ-globulins, and polylysine, as well as using media mimicking the extracellular matrix, provided strong support to the view that the trisulfonated pyrene fosters binding interactions with the exposed positive groups on the surface of proteins, responsible for a remarkable in vivo hyperintensity in T1w MR images. The in vivo MR images of the liver, kidneys, and spleen showed a marked contrast enhancement in the first 10 min after the i.v. injection of Gd-L1, which was 2-6-fold higher than that for Gd-HPDO3A, while maintaining a very similar excretion behavior. These findings may pave the way to an improved design of MRI GBCAs, for the first time, based on the setup of weak and dynamic interactions with abundant positive groups on serum and ECM proteins.


Subject(s)
Contrast Media , Heterocyclic Compounds , Organometallic Compounds , Humans , Contrast Media/chemistry , Static Electricity , Magnetic Resonance Imaging/methods , Organometallic Compounds/chemistry , Pyrenes , Gadolinium
2.
Sci Rep ; 13(1): 13725, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608036

ABSTRACT

This work aims at developing a diagnostic method based on Electron Paramagnetic Resonance (EPR) measurements of stable nitroxide radicals released from "EPR silent" liposomes. The liposome destabilisation and consequent radical release is enzymatically triggered by the action of phospholipase A2 (PLA2) present in the biological sample of interest. PLA2 are involved in a broad range of processes, and changes in their activity may be considered as a unique valuable biomarker for early diagnoses. The minimum amount of PLA2 measured "in vitro" was 0.09 U/mL. Moreover, the liposomes were successfully used to perform Overhauser-enhanced Magnetic Resonance Imaging (OMRI) in vitro at 0.2 T. The amount of radicals released by PLA2 driven liposome destabilization was sufficient to generate a well detectable contrast enhancement in the corresponding OMRI image.


Subject(s)
Cyclic N-Oxides , Liposomes , Electron Spin Resonance Spectroscopy , Magnetic Resonance Imaging
3.
J Org Chem ; 88(7): 4546-4553, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36988421

ABSTRACT

Multimodality probes appear of great interest for innovative imaging applications in disease diagnosis. Herein, we present a chemical strategy enabling site-specific double-modification and cyclization of a peptide probe exploiting native chemical ligation (NCL) and thiol-maleimide addition. The synthetic strategy is straightforward and of general applicability for the development of double-labeled peptide multimodality probes.


Subject(s)
Peptides , Sulfhydryl Compounds , Maleimides/chemical synthesis , Maleimides/chemistry
4.
Sci Rep ; 13(1): 620, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635364

ABSTRACT

This study aims to develop poly lactic-co-glycolic acid (PLGA) nanoparticles with an innovative imaging-guided approach based on Boron Neutron Capture Therapy for the treatment of mesothelioma. The herein-reported results demonstrate that PLGA nanoparticles incorporating oligo-histidine chains and the dual Gd/B theranostic agent AT101 can successfully be exploited to deliver a therapeutic dose of boron to mesothelioma cells, significantly higher than in healthy mesothelial cells as assessed by ICP-MS and MRI. The selective release is pH responsive taking advantage of the slightly acidic pH of the tumour extracellular environment and triggered by the protonation of imidazole groups of histidine. After irradiation with thermal neutrons, tumoral and healthy cells survival and clonogenic ability were evaluated. Obtained results appear very promising, providing patients affected by this rare disease with an improved therapeutic option, exploiting PLGA nanoparticles.


Subject(s)
Boron Neutron Capture Therapy , Mesothelioma, Malignant , Mesothelioma , Nanoparticles , Humans , Boron Neutron Capture Therapy/methods , Precision Medicine , Glycols , Histidine , Mesothelioma/diagnostic imaging , Mesothelioma/radiotherapy , Hydrogen-Ion Concentration
5.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36361667

ABSTRACT

A total of 20% to 50% of prostate cancer (PCa) patients leave the surgery room with positive tumour margins. The intraoperative combination of fluorescence guided surgery (FGS) and photodynamic therapy (PDT) may be very helpful for improving tumour margin delineation and cancer therapy. PSMA is a transmembrane protein overexpressed in 90−100% of PCa cells. The goal of this work is the development of a PSMA-targeted Near InfraRed Fluorescent probe to offer the surgeon a valuable intraoperative tool for allowing a complete tumour removal, implemented with the possibility of using PDT to kill the eventual not resected cancer cells. PSMA-617 binding motif was conjugated to IRDye700DX-NHS and the conjugation did not affect the photophysical characteristics of the fluorophore. The affinity of IRDye700DX-PSMA-617 towards PCa cells followed the order of their PSMA expression, i.e., PC3-PIP > LNCaP > PC3, PC3-FLU. NIRF imaging showed a significant PC3-PIP tumour uptake after the injection of 1 or 5 nmol with a maximum tumour-to-muscle ratio (ca. 60) observed for both doses 24 h post-injection. Importantly, urine, healthy prostate, and the bladder were not fluorescent at 24 h post-injection. Flow cytometry and confocal images highlighted a co-localization of PSMA+ cells with IRDye700DX-PSMA uptake. Very interestingly, ex vivo analysis on a tumour specimen highlighted a significant PSMA expression by tumour-associated macrophages, likely attributable to extracellular vesicles secreted by the PSMA(+) tumour cells. FGS proved that IRDye700DX-PSMA was able to easily delineate tumour margins. PDT experiments showed a concentration-dependent decrease in cell viability (from 75% at 10 nM to 12% at 500 nM), whereas controls did not show any cytotoxicity. PC3-PIP tumour-bearing mice subjected to photodynamic therapy showed a delayed tumour growth. In conclusion, a novel PSMA-targeted NIRF dye with dual imaging-PDT capabilities was synthesized and displayed superior specificity compared to other small PSMA targeted molecules.


Subject(s)
Photochemotherapy , Prostatic Neoplasms , Surgery, Computer-Assisted , Animals , Humans , Male , Mice , Antigens, Surface , Cell Line, Tumor , Fluorescent Dyes/pharmacology , Fluorescent Dyes/therapeutic use , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Surgery, Computer-Assisted/methods
6.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296575

ABSTRACT

The N-capping region of an α-helix is a short N-terminal amino acid stretch that contributes to nucleate and stabilize the helical structure. In the VEGF mimetic helical peptide QK, the N-capping region was previously demonstrated to be a key factor of QK helical folding. In this paper, we explored the effect of the chiral inversion of the N-capping sequence on QK folding, performing conformational analysis in solution by circular dichroism and NMR spectroscopy. The effect of such a modification on QK stability in serum and the proliferative effect were also evaluated.


Subject(s)
Amino Acids , Vascular Endothelial Growth Factor A , Amino Acid Sequence , Peptides/chemistry , Circular Dichroism , Protein Conformation
7.
Chemistry ; 28(17): e202104563, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35175676

ABSTRACT

The assessment of unregulated level of enzyme activity is a crucial parameter for early diagnoses in a wide range of pathologies. In this study, we propose the use of electron paramagnetic resonance (EPR) as an easy method to probe carboxylesterase (CE) enzymatic activity in vitro. For this application, were synthesized two amphiphilic, nitroxide containing esters, namely Tempo-C12 (T-C12) and Tempo-2-C12 (T-2-C12). They exhibit low solubility in water and form stable micelles in which the radicals are EPR almost silent, but the hydrolysis of the ester bond yields narrows and intense EPR signals. The intensity of the EPR signals is proportional to the enzymatic activity. CEs1, CEs2 and esterase from porcine liver (PLE) were investigated. The obtained results show that T-C12 and T-2-C12-containing systems display a much higher selectivity toward the CEs2, with a Limit of Detection of the same order of those ones obtained with optical methods.


Subject(s)
Carboxylesterase , Esters , Animals , Electron Spin Resonance Spectroscopy/methods , Esters/chemistry , Hydrolysis , Liver , Swine
8.
J Med Chem ; 64(20): 15250-15261, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34661390

ABSTRACT

Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 µM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques.


Subject(s)
Atherosclerosis/metabolism , Contrast Media/chemistry , Elastin/metabolism , Gadolinium/chemistry , Magnetic Resonance Imaging , Tropoelastin/analysis , Animals , Contrast Media/chemical synthesis , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Surface Plasmon Resonance
9.
J Am Chem Soc ; 143(35): 14178-14188, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34432442

ABSTRACT

The search for alternatives to Gd-containing magnetic resonance imaging (MRI) contrast agents addresses the field of Fe(III)-bearing species with the expectation that the use of an essential metal ion may avoid the issues raised by the exogenous Gd. Attention is currently devoted to highly stable Fe(III) complexes with hexacoordinating ligands, although they may lack any coordinated water molecule. We found that the hexacoordinated Fe(III) complex with two units of deferasirox, a largely used iron sequestering agent, owns properties that can make it a viable alternative to Gd-based agents. Fe(deferasirox)2 displays an outstanding thermodynamic stability, a high binding affinity to human serum albumin (three molecules of complex are simultaneously bound to the protein), and a good relaxivity that increases in the range 20-80 MHz. The relaxation enhancement is due to second sphere water molecules likely forming H-bonds with the coordinating phenoxide oxygens. A further enhancement was observed upon the formation of the supramolecular adduct with albumin. The binding sites of Fe(deferasirox)2 on albumin were characterized by relaxometric competitive assays. Preliminary in vivo imaging studies on a tumor-bearing mouse model indicate that, on a 3 T MRI scanner, the contrast ability of Fe(deferasirox)2 is comparable to the one shown by the commercial Gd(DTPA) agent. ICP-MS analyses on blood samples withdrawn from healthy mice administered with a dose of 0.1 mmol/kg of Fe(deferasirox)2 showed that the complex is completely removed in 24 h.


Subject(s)
Contrast Media/chemistry , Coordination Complexes/chemistry , Deferasirox/analogs & derivatives , Animals , Binding Sites , Cell Line, Tumor , Contrast Media/metabolism , Contrast Media/pharmacokinetics , Coordination Complexes/metabolism , Coordination Complexes/pharmacokinetics , Deferasirox/metabolism , Deferasirox/pharmacokinetics , Female , Humans , Iron/chemistry , Magnetic Resonance Imaging , Mice, Inbred BALB C , Protein Binding , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism
10.
J Nanobiotechnology ; 19(1): 208, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34256774

ABSTRACT

BACKGROUND: The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by flow cytometry analysis. RESULTS: PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 °C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel kabi (PTX Kabi) used in clinical applications. Tumour cells uptake was initially assessed by ICP-MS and MRI on B16-F10 cell line. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. CONCLUSIONS: LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents. For the first time the anon invasive "in vivo" determination of the amount of PTX accumulated in the tumour was possible, thanks to the use of theranostic agents of natural origin.


Subject(s)
Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Paclitaxel/chemistry , Precision Medicine/methods , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biocompatible Materials , Cell Line, Tumor , Contrast Media , Drug Delivery Systems/methods , Lipoproteins, LDL/chemistry , Liver/pathology , Male , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Muscles/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Particle Size
11.
Eur J Med Chem ; 222: 113575, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34130005

ABSTRACT

HPLW is a Vascular Endothelial Growth Factor (VEGF)-mimicking beta-hairpin peptide endowed of proangiogenic effect and showing valuable biomedical application in the proangiogenic therapy. However, the translational potential of HPLW is limited by its low metabolic stability, which would shorten the in vivo efficacy of the molecule. Here, we developed a peptide analog of HPLW, named HPLW2, that retains the structural and biological properties of the original peptide but features an impressive resistance to degradation by human serum proteases. HPLW2 was obtained by covalently modifying the chemical structure of the peptide with molecular tools known to impart protease resistance. Notably, the peptide was cyclized by installing an interstrand triazole bridge through Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reaction. HPLW2 appears as a novel and promising drug candidate with potential biomedical application in the proangiogenic therapy as a low molecular weight drug, alternative to the use of VEGF. Our work points out the utility of the interstrand triazole bridge as effective chemical platform for the conformational and metabolic stabilization of beta-hairpin bioactive peptides.


Subject(s)
Peptides/chemistry , Vascular Endothelial Growth Factor A/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Click Chemistry , Humans , Molecular Conformation , Peptides/pharmacology
12.
J Mater Chem B ; 9(24): 4863-4872, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34095943

ABSTRACT

This study is focused on the development of innovative sensors to non-invasively monitor the tissue implant status by Fast-Field-Cycling Magnetic Resonance Imaging (FFC-MRI). These sensors are based on oligo-histidine moieties that are conjugated to PLGA polymers representing the structural matrix for cells hosting scaffolds. The presence of 14N atoms of histidine causes a quadrupolar relaxation enhancement (also called Quadrupolar Peak, QP) at 1.39 MHz. This QP falls at a frequency well distinct from the QPs generated by endogenous semisolid proteins. The relaxation enhancement is pH dependent in the range 6.5-7.5, thus it acts as a reporter of the scaffold integrity as it progressively degrades upon lowering the microenvironmental pH. The ability of this new sensors to generate contrast in an image obtained at 1.39 MHz on a FFC-MRI scanner is assessed. A good biocompatibility of the histidine-containing scaffolds is observed after its surgical implantation in healthy mice. Over time the scaffold is colonized by endogenous fibroblasts and this process is accompanied by a progressive decrease of the intensity of the relaxation peak. In respect to the clinically used contrast agents this material has the advantage of generating contrast without the use of potentially toxic paramagnetic metal ions.


Subject(s)
Imidazoles/chemistry , Magnetic Resonance Imaging/methods , Prostheses and Implants , Smart Materials/chemistry , Animals , Contrast Media/chemistry , Mice
13.
Cancers (Basel) ; 13(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804056

ABSTRACT

CML is a hematopoietic stem-cell disorder emanating from breakpoint cluster region/Abelson murine leukemia 1 (BCR/ABL) translocation. Introduction of different TKIs revolutionized treatment outcome in CML patients, but CML LSCs seem insensitive to TKIs and are detectable in newly diagnosed and resistant CML patients and in patients who discontinued therapy. It has been reported that CML LSCs aberrantly express some CD markers such as CD26 that can be used for the diagnosis and for targeting. In this study, we confirmed the presence of CD26+ CML LSCs in newly diagnosed and resistant CML patients. To selectively target CML LSCs/progenitor cells that express CD26 and to spare normal HSCs/progenitor cells, we designed a venetoclax-loaded immunoliposome (IL-VX). Our results showed that by using this system we could selectively target CD26+ cells while sparing CD26- cells. The efficiency of venetoclax in targeting CML LSCs has been reported and our system demonstrated a higher potency in cell death induction in comparison to free venetoclax. Meanwhile, treatment of patient samples with IL-VX significantly reduced CD26+ cells in both stem cells and progenitor cells population. In conclusion, this approach showed that selective elimination of CD26+ CML LSCs/progenitor cells can be obtained in vitro, which might allow in vivo reduction of side effects and attainment of treatment-free, long-lasting remission in CML patients.

14.
Chemistry ; 27(5): 1849-1859, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33184913

ABSTRACT

Herein, the synthesis and an extensive characterization of two novel Gd(AAZTA) (AAZTA=6-amino-6-methylperhydro-1,4-diazepine tetra acetic acid) derivatives functionalized with short (C2 and C4 ) n-alkyl acid functions are reported. The carboxylate functionality is the site for further conjugations for the design of more specific contrast agents (CAs). Interestingly, it has been found that the synthesized complexes display enhanced properties for use as MRI contrast agents on their own. The stability constants determined by using potentiometric titration and UV/Vis spectrophotometry were slightly higher than the one reported for the parent Gd(AAZTA) complex. This observation might be accounted for by the larger sigma-electron donation of the acyl substituents with respect to the one provided by the methyl group in the parent complex. As far as concerns the kinetic stability, transmetallation experiments with endogenous ions (e.g. Cu2+ ) implied that the Gd3+ ions present in these Gd(AAZTA) derivatives show somewhat smaller susceptibility to chemical exchange towards these ions at 25 °C, close to the physiological condition. The 1 H NMR spectra of the complexes with EuIII and YbIII displayed a set of signals consistent with half the number of methylene protons present on each ligand. The number of resonances was invariant over a large range of temperatures, suggesting the occurrence of a fast interconversion between structural isomers. The relaxivity values (298 K, 20 MHz) were consistent with q=2 being equal to 8.8 mm-1 s-1 for the C2 derivative and 9.4 mm-1 s-1 for the C4 one, that is, sensibly larger than the one reported for Gd(AAZTA) (7.1 mm-1 s-1 ). Variable-temperature (VT)-T2 17 O NMR measurements showed, for both complexes, the presence of two populations of coordinated water molecules, one in fast and one in slow exchange with the bulk water. As the high-resolution 1 H NMR spectra of the analogs with EuIII and YbIII did not show the occurrence of distinct isomers (as frequently observed in other macrocyclic lanthanide(III)-containing complexes), we surmised the presence of two fast-interconverting isomers in solution. The analysis of the 17 O NMR VT-T2 profiles versus temperature allowed their relative molar fraction to be established as 35 % for the isomer with the fast exchanging water and 65 % for the isomer with the water molecules in slower exchange. Finally, 1 H NMRD profiles over an extended range of applied magnetic field strengths have been satisfactory fitted on the basis of the occurrence of the two interconverting species.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Magnetic Resonance Imaging/methods , Organometallic Compounds/chemistry , Protons
15.
Angew Chem Int Ed Engl ; 60(8): 4208-4214, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33186484

ABSTRACT

This study reports the development of a completely new class of MRI contrast agents, displaying remarkable relaxation effects in the absence of paramagnetic metal ions. Their detection requires the acquisition of images at variable magnetic field strength as provided by fast field cycling imaging scanners. They contain poly-histidine chains (poly-His), whose imidazole groups generate 14 N-quadrupolar-peaks that cause a relaxation enhancement of water protons at a frequency (1.38±0.3 MHz) that is readily detectable from the frequencies associated with endogenous proteins. The poly-His quadrupolar peaks are detectable only when the polymer is in a solid-like form, that is, at pH>6.6. Above this value, their intensity is pH dependent and can be used to report on the occurring pH changes. On this basis, the poly-His moieties were conjugated to biocompatible polymers, such as polylactic and glycolic acid, in order to form stable nanoparticles able to encapsulate structured water in their core. FFC images were acquired to assess their contrast-generating ability.

16.
Nanomaterials (Basel) ; 10(6)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516931

ABSTRACT

Nowadays, magnetic resonance imaging (MRI) is one of the key, noninvasive modalities to detect and stage cancer which benefits from contrast agents (CA) to differentiate healthy from tumor tissue. An innovative class of MRI CAs is represented by Gd-loaded gold nanoparticles. The size, shape and chemical functionalization of Gd-loaded gold nanoparticles appear to affect the observed relaxation enhancement of water protons in their suspensions. The herein reported results shed more light on the determinants of the relaxation enhancement brought by Gd-loaded concave cube gold nanoparticles (CCGNPs). It has been found that, in the case of nanoparticles endowed with concave surfaces, the relaxivity is remarkably higher compared to the corresponding spherical (i.e., convex) gold nanoparticles (SPhGNPs). The main determinant for the observed relaxation enhancement is represented by the occurrence of a large contribution from second sphere water molecules which can be exploited in the design of high-efficiency MRI CA.

17.
Nanomaterials (Basel) ; 10(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041219

ABSTRACT

Leukemia is a type of hematopoietic stem/progenitor cell malignancy characterized by the accumulation of immature cells in the blood and bone marrow. Treatment strategies mainly rely on the administration of chemotherapeutic agents, which, unfortunately, are known for their high toxicity and side effects. The concept of targeted therapy as magic bullet was introduced by Paul Erlich about 100 years ago, to inspire new therapies able to tackle the disadvantages of chemotherapeutic agents. Currently, nanoparticles are considered viable options in the treatment of different types of cancer, including leukemia. The main advantages associated with the use of these nanocarriers summarized as follows: i) they may be designed to target leukemic cells selectively; ii) they invariably enhance bioavailability and blood circulation half-life; iii) their mode of action is expected to reduce side effects. FDA approval of many nanocarriers for treatment of relapsed or refractory leukemia and the desired results extend their application in clinics. In the present review, different types of nanocarriers, their capability in targeting leukemic cells, and the latest preclinical and clinical data are discussed.

18.
Mol Imaging Biol ; 22(1): 85-93, 2020 02.
Article in English | MEDLINE | ID: mdl-31025163

ABSTRACT

PURPOSE: Prostate cancer (PCa), the most widespread male cancer in western countries, is generally eradicated by surgery, especially if localized. However, during surgical procedures, it is not always possible to identify malignant tissues by visual inspection. Among the possible consequences, there is the formation of positive surgical margins, often associated with recurrence. In this work, the gastrin-releasing peptide receptor (GRPR), overexpressed in the prostatic carcinoma and not in healthy tissues or in benign hyperplasia (BPH), is proposed as target molecule to design a novel near-infrared fluorescent (NIRF) probe for image-guided prostatectomy. PROCEDURES: The NIRF dye Sulfo-Cy5.5 was conjugated to a Bombesin-like peptide (BBN), targeting GRPR. The final product, called BBN-Cy5.5, was characterized and tested in vitro on PC-3, DU145, and LnCAP cell lines, using unconjugated Sulfo-Cy5.5 as control. In vivo biodistribution studies were performed by optical imaging in PC-3 tumor-bearing and healthy mice. Finally, simulation of the surgical protocol was carried out. RESULTS: BBN-Cy5.5 showed high water solubility and a good relative quantum yield. The ability of the probe to recognize the GRPR, highly expressed in PC-3 cells, was tested both in vitro and in vivo, where a significant tumor accumulation was achieved 24 h post-injection. Furthermore, a distinguishable fluorescent signal was visible in mice bearing PCa, when the surgery was simulated. By contrast, low signal was found in healthy or BPH-affected mice. CONCLUSIONS: This work proposes a new NIRF probe ideal to target GRPR, biomarker of PCa. The promising data obtained suggest that the dye could allow the real-time intraoperative visualization of prostate cancer.


Subject(s)
Bombesin/chemistry , Fluorescent Dyes/pharmacokinetics , Optical Imaging/methods , Prostatic Neoplasms/surgery , Receptors, Bombesin/metabolism , Surgery, Computer-Assisted/methods , Animals , Cell Line, Tumor , Fluorescent Dyes/chemistry , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Spectroscopy, Near-Infrared , Tissue Distribution , Xenograft Model Antitumor Assays
19.
Invest Radiol ; 55(1): 30-37, 2020 01.
Article in English | MEDLINE | ID: mdl-31503081

ABSTRACT

OBJECTIVES: Being administered intravenously, the tissue that gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging mostly encounter is blood. Herein, it has been investigated how much Gd is internalized by cellular blood components upon the in vitro incubation of GBCAs in human blood or upon intravenous administration of GBCAs to healthy mice. We report results that show how the superb sensitivity of inductively coupled plasma-mass spectrometry (ICP-MS) allows the detection of very tiny amounts of GBCAs entering red blood cells (RBCs) and white blood cells (WBCs). This finding may introduce new insights in the complex matter relative to excretion and retention pathway of administered GBCAs. MATERIALS AND METHODS: The study was tackled by 2 independent approaches. First, human blood was incubated in vitro with 5 mM of GBCAs (gadoteridol, gadobenate dimeglumine, gadodiamide, and gadopentetate dimeglumine) for variable times (30 minutes, 1 hour, 2 hours, and 3 hours) at 37°C. Then, blood cell components were isolated by using the Ficoll Histopaque method, washed 3 times, mineralized, and analyzed by ICP-MS for total Gd quantification. Furthermore, blood components derived from human blood incubated with gadodiamide or gadoteridol underwent UPLC-MS (ultra performance liquid chromatography-mass spectrometry) analysis for determination of the amount of intact Gd-DTPA-BMA and Gd-HPDO3A. Second, the distribution of Gd in the blood components of healthy CD-1 mice was administered intravenously with a single dose (1.2 mmol/kg) of gadodiamide or gadoteridol. Blood samples were separated and processed at different time points (24 hours, 48 hours, 96 hours, and 10 days after GBCA administration). As for human blood, ICP-MS quantification of total Gd and UPLC-MS determination of the amount of intact GBCAs were carried out. RESULTS: The amount of Gd taken up by RBCs and WBCs was well detectable by ICP-MS. The GBCAs seem to be able to cross the membrane by diffusion (RBCs) or, possibly, by macropinocytosis (WBCs). Ex vivo studies allowed it to be established that the structure of the different GBCAs were not relevant to determine the amount of Gd internalized in the cells. Although the amount of Gd steadily decreases over time in gadoteridol-labeled cells, in the case of gadodiamide, the amount of Gd in the cells does not decrease (even 10 days after the administration of the GBCA). Moreover, while gadoteridol maintains its structural integrity upon cellular uptake, in the case of gadodiamide, the amount of intact complex markedly decreases over time. CONCLUSIONS: The detection of significant amounts of Gd in RBCs and WBCs indicates that GBCAs can cross blood cell membranes. This finding may play a role in our understanding of the processes that are at the basis of Gd retention in the tissues of patients who have received the administration of GBCAs.


Subject(s)
Contrast Media/pharmacokinetics , Erythrocytes/metabolism , Gadolinium/pharmacokinetics , Leukocytes/metabolism , Magnetic Resonance Imaging , Animals , Contrast Media/administration & dosage , Gadolinium/administration & dosage , Gadolinium DTPA/administration & dosage , Gadolinium DTPA/pharmacokinetics , Heterocyclic Compounds/administration & dosage , Heterocyclic Compounds/pharmacokinetics , Humans , In Vitro Techniques , Male , Meglumine/administration & dosage , Meglumine/analogs & derivatives , Meglumine/pharmacokinetics , Mice , Models, Animal , Organometallic Compounds/administration & dosage , Organometallic Compounds/pharmacokinetics , Spectrophotometry, Atomic/methods
20.
Arterioscler Thromb Vasc Biol ; 39(8): 1602-1613, 2019 08.
Article in English | MEDLINE | ID: mdl-31189431

ABSTRACT

OBJECTIVE: The early embryo implantation is characterized by enhanced uterine vascular permeability at the site of blastocyst attachment, followed by extracellular-matrix remodeling and angiogenesis. Two TG (transglutaminase) isoenzymes, TG2 (tissue TG) and FXIII (factor XIII), catalyze covalent cross-linking of the extracellular-matrix. However, their specific role during embryo implantation is not fully understood. Approach and Results: For mapping the distribution as well as the enzymatic activities of TG2 and FXIII towards blood-borne and resident extracellular-matrix substrates, we synthetized selective and specific low molecular weight substrate analogs for each of the isoenzymes. The implantation sites were challenged by genetically modifying the trophoblast cells in the outer layer of blastocysts, to either overexpress or deplete TG2 or FXIII, and the angiogenic response was studied by dynamic contrast-enhanced-magnetic resonance imaging. Dynamic contrast-enhanced-magnetic resonance imaging revealed a decrease in the permeability of decidual vasculature surrounding embryos in which FXIII were overexpressed in trophoblast cell. Reduction in decidual blood volume fraction was demonstrated when either FXIII or TG2 were overexpressed in embryonic trophoblast cell and was elevated when trophoblast cell was depleted of FXIII. These results were corroborated by histological analysis. CONCLUSIONS: In this study, we report on the isoenzyme-specific roles of TG2 and FXIII during the early days of mouse pregnancy and further reveal their involvement in decidual angiogenesis. Our results reveal an important magnetic resonance imaging-detectable function of embryo-derived TG2 and FXIII on regulating maternal angiogenesis during embryo implantation in mice.Visual Overview: An online visual overview is available for this article.


Subject(s)
Embryo Implantation/physiology , Factor XIII/physiology , GTP-Binding Proteins/physiology , Magnetic Resonance Imaging/methods , Neovascularization, Physiologic/physiology , Transglutaminases/physiology , Animals , Female , Fibrinogen/physiology , Mice , Pregnancy , Protein Glutamine gamma Glutamyltransferase 2
SELECTION OF CITATIONS
SEARCH DETAIL
...