Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(44): 17051-17060, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37881814

ABSTRACT

Airport ice control products contributed to total phosphorus (TP) loadings in a study of surface water runoff at a medium-sized airport from 2015 to 2021. Eleven airport ice control products had TP concentrations from 1-807 mg L-1 in liquid formulas, while solid pavement deicer had a TP concentration of 805 mg kg-1. Product application data, formula TP concentrations, and surface water sampling results were used to estimate TP concentration and loading contributions from these ice control products to receiving streams. Airport ice control products were found to contribute to TP in 84% of the water samples collected at downstream sites during deicing events, and TP concentrations at those sites exceeded aquatic life benchmarks in 70% of samples collected during deicing. A receiving stream 6 km downstream had TP attributed to airport ice control sources in 78% of the samples. TP loadings at an upstream site and the receiving stream site were greatest during the largest runoff events as is typical in urban runoff, but this pattern was not always followed at airport outfall sites due to the influence of TP in deicer products. Products analyzed in this study are used at airports across the United States and abroad, and findings suggest that airport deicers could represent a previously unrecognized source of phosphorus to adjacent waterways.


Subject(s)
Ice , Water Pollutants, Chemical , Airports , Phosphorus , Water , Environmental Monitoring , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 41(4): 1016-1041, 2022 04.
Article in English | MEDLINE | ID: mdl-35170813

ABSTRACT

With improved analytical techniques, environmental monitoring studies are increasingly able to report the occurrence of tens or hundreds of chemicals per site, making it difficult to identify the most relevant chemicals from a biological standpoint. For the present study, organic chemical occurrence was examined, individually and as mixtures, in the context of potential biological effects. Sediment was collected at 71 Great Lakes (USA/Canada) tributary sites and analyzed for 87 chemicals. Multiple risk-based lines of evidence were used to prioritize chemicals and locations, including comparing sediment concentrations and estimated porewater concentrations with established whole-organism benchmarks (i.e., sediment and water quality criteria and screening values) and with high-throughput toxicity screening data from the US Environmental Protection Agency's ToxCast database, estimating additive effects of chemical mixtures on common ToxCast endpoints, and estimating toxic equivalencies for mixtures of alkylphenols and polycyclic aromatic hydrocarbons (PAHs). This multiple-lines-of-evidence approach enabled the screening of more chemicals, mitigated the uncertainties of individual approaches, and strengthened common conclusions. Collectively, at least one benchmark/screening value was exceeded for 54 of the 87 chemicals, with exceedances observed at all 71 of the monitoring sites. Chemicals with the greatest potential for biological effects, both individually and as mixture components, were bisphenol A, 4-nonylphenol, indole, carbazole, and several PAHs. Potential adverse outcomes based on ToxCast gene targets and putative adverse outcome pathways relevant to individual chemicals and chemical mixtures included tumors, skewed sex ratios, reproductive dysfunction, hepatic steatosis, and early mortality, among others. The results provide a screening-level prioritization of chemicals with the greatest potential for adverse biological effects and an indication of sites where they are most likely to occur. Environ Toxicol Chem 2022;41:1016-1041. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Environmental Monitoring/methods , Lakes , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...