Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 120(5): 519-530, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38270932

ABSTRACT

AIMS: A reduction in both dystrophin and neuronal nitric oxide synthase (NOS1) secondary to microRNA-31 (miR-31) up-regulation contributes to the atrial electrical remodelling that underpins human and experimental atrial fibrillation (AF). In contrast, patients with Duchenne muscular dystrophy (DMD), who lack dystrophin and NOS1 and, at least in the skeletal muscle, have raised miR-31 expression, do not have increase susceptibility to AF in the absence of left ventricular (LV) dysfunction. Here, we investigated whether dystrophin deficiency is also associated with atrial up-regulation of miR-31, loss of NOS1 protein, and increased AF susceptibility in young mdx mice. METHODS AND RESULTS: Echocardiography showed normal cardiac structure and function in 12-13 weeks mdx mice, with no indication by assay of hydroxyproline that atrial fibrosis had developed. The absence of dystrophin in mdx mice was accompanied by an overall reduction in syntrophin and a lower NOS1 protein content in the skeletal muscle and in the left atrial and ventricular myocardium, with the latter occurring alongside reduced Nos1 transcript levels (exons 1-2 by quantitative polymerase chain reaction) and an increase in NOS1 polyubiquitination [assessed using tandem polyubiquitination pulldowns; P < 0.05 vs. wild type (WT)]. Neither the up-regulation of miR-31 nor the substantial reduction in NOS activity observed in the skeletal muscle was present in the atrial tissue of mdx mice. At difference with the skeletal muscle, the mdx atrial myocardium showed a reduction in the constitutive NOS inhibitor, caveolin-1, coupled with an increase in NOS3 serine1177 phosphorylation, in the absence of differences in the protein content of other NOS isoforms or in the relative expression NOS1 splice variants. In line with these findings, transoesophageal atrial burst pacing revealed no difference in AF susceptibility between mdx mice and their WT littermates. CONCLUSION: Dystrophin depletion is not associated with atrial miR-31 up-regulation, reduced NOS activity, or increased AF susceptibility in the mdx mouse. Compared with the skeletal muscle, the milder atrial biochemical phenotype may explain why patients with DMD do not exhibit a higher prevalence of atrial arrhythmias despite a reduction in NOS1 content.


Subject(s)
Atrial Fibrillation , Disease Models, Animal , Dystrophin , Mice, Inbred mdx , MicroRNAs , Muscular Dystrophy, Duchenne , Nitric Oxide Synthase Type I , Animals , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/complications , Atrial Fibrillation/metabolism , Atrial Fibrillation/genetics , Atrial Fibrillation/physiopathology , Atrial Fibrillation/etiology , Atrial Fibrillation/pathology , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type I/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Dystrophin/genetics , Dystrophin/metabolism , Humans , Male , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Atria/pathology , Atrial Remodeling , Mice
2.
Sci Transl Med ; 8(340): 340ra74, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27225184

ABSTRACT

Atrial fibrillation (AF) is a growing public health burden, and its treatment remains a challenge. AF leads to electrical remodeling of the atria, which in turn promotes AF maintenance and resistance to treatment. Although remodeling has long been a therapeutic target in AF, its causes remain poorly understood. We show that atrial-specific up-regulation of microRNA-31 (miR-31) in goat and human AF depletes neuronal nitric oxide synthase (nNOS) by accelerating mRNA decay and alters nNOS subcellular localization by repressing dystrophin translation. By shortening action potential duration and abolishing rate-dependent adaptation of the action potential duration, miR-31 overexpression and/or disruption of nNOS signaling recapitulates features of AF-induced remodeling and significantly increases AF inducibility in mice in vivo. By contrast, silencing miR-31 in atrial myocytes from patients with AF restores dystrophin and nNOS and normalizes action potential duration and its rate dependency. These findings identify atrial-specific up-regulation of miR-31 in human AF as a key mechanism causing atrial dystrophin and nNOS depletion, which in turn contributes to the atrial phenotype begetting this arrhythmia. miR-31 may therefore represent a potential therapeutic target in AF.


Subject(s)
Arrhythmias, Cardiac/metabolism , Atrial Fibrillation/metabolism , Dystrophin/metabolism , Heart Atria/metabolism , MicroRNAs/metabolism , Nitric Oxide Synthase Type I/metabolism , Action Potentials/genetics , Action Potentials/physiology , Animals , Gene Expression Regulation , Goats , Humans , Mice , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Up-Regulation
3.
Mol Cell ; 56(2): 193-204, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25242146

ABSTRACT

The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system.


Subject(s)
Interferon-gamma/metabolism , Neural Stem Cells/cytology , Receptors, Interferon/metabolism , Transport Vesicles/metabolism , 3T3 Cells , Animals , Biological Transport , Cell Communication , Cellular Microenvironment , Inflammation/immunology , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Mice , Neural Stem Cells/transplantation , RNA, Messenger , Receptors, Interferon/genetics , STAT1 Transcription Factor/biosynthesis , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction , Th1 Cells/metabolism , Th2 Cells/metabolism , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...