Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Hum Mutat ; 43(12): 2222-2233, 2022 12.
Article in English | MEDLINE | ID: mdl-36259739

ABSTRACT

Trichothiodystrophy (TTD) is a rare hereditary disease whose prominent feature is brittle hair. Additional clinical signs are physical and neurodevelopmental abnormalities and in about half of the cases hypersensitivity to UV radiation. The photosensitive form of TTD (PS-TTD) is most commonly caused by mutations in the ERCC2/XPD gene encoding a subunit of the transcription/DNA repair complex TFIIH. Here we report novel ERCC2/XPD mutations affecting proper protein folding, which generate thermo-labile forms of XPD associated with thermo-sensitive phenotypes characterized by reversible aggravation of TTD clinical signs during episodes of fever. In patient cells, the newly identified XPD variants result in thermo-instability of the whole TFIIH complex and consequent temperature-dependent defects in DNA repair and transcription. Improving the protein folding process by exposing patient cells to low temperature or to the chemical chaperone glycerol allowed rescue of TFIIH thermo-instability and a concomitant recovery of the complex activities. Besides providing a rationale for the peculiar thermo-sensitive clinical features of these new cases, the present findings demonstrate how variations in the cellular concentration of mutated TFIIH impact the cellular functions of the complex and underlie how both quantitative and qualitative TFIIH alterations contribute to TTD clinical features.


Subject(s)
Hair Diseases , Skin Diseases , Trichothiodystrophy Syndromes , Xeroderma Pigmentosum , Humans , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , Trichothiodystrophy Syndromes/genetics , Trichothiodystrophy Syndromes/complications , DNA Repair , Hair Diseases/genetics , Transcription, Genetic , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/metabolism
2.
Nucleic Acids Res ; 49(19): 10911-10930, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34581821

ABSTRACT

CSA and CSB proteins are key players in transcription-coupled nucleotide excision repair (TC-NER) pathway that removes UV-induced DNA lesions from the transcribed strands of expressed genes. Additionally, CS proteins play relevant but still elusive roles in other cellular pathways whose alteration may explain neurodegeneration and progeroid features in Cockayne syndrome (CS). Here we identify a CS-containing chromatin-associated protein complex that modulates rRNA transcription. Besides RNA polymerase I (RNAP1) and specific ribosomal proteins (RPs), the complex includes ferrochelatase (FECH), a well-known mitochondrial enzyme whose deficiency causes erythropoietic protoporphyria (EPP). Impairment of either CSA or FECH functionality leads to reduced RNAP1 occupancy on rDNA promoter that is associated to reduced 47S pre-rRNA transcription. In addition, reduced FECH expression leads to an abnormal accumulation of 18S rRNA that in primary dermal fibroblasts from CS and EPP patients results in opposed rRNA amounts. After cell irradiation with UV light, CSA triggers the dissociation of the CSA-FECH-CSB-RNAP1-RPs complex from the chromatin while it stabilizes its binding to FECH. Besides disclosing a function for FECH within nucleoli, this study sheds light on the still unknown mechanisms through which CSA modulates rRNA transcription.


Subject(s)
Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Ferrochelatase/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Polymerase I/genetics , RNA, Ribosomal/genetics , Transcription Factors/genetics , Cell Line, Transformed , Cell Survival , Chromatin Immunoprecipitation , Cockayne Syndrome/metabolism , Cockayne Syndrome/pathology , DNA Damage , DNA Helicases/metabolism , DNA Repair/radiation effects , DNA Repair Enzymes/metabolism , Ferrochelatase/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Gene Expression Regulation , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Polymerase I/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Ultraviolet Rays
3.
J Invest Dermatol ; 139(1): 38-50, 2019 01.
Article in English | MEDLINE | ID: mdl-30009828

ABSTRACT

Defects in Cockayne syndrome type A (CSA), a gene involved in nucleotide excision repair, cause an autosomal recessive syndrome characterized by growth failure, progressive neurological dysfunction, premature aging, and skin photosensitivity and atrophy. Beyond its role in DNA repair, the CSA protein has additional functions in transcription and oxidative stress response, which are not yet fully elucidated. Here, we investigated the role of CSA protein in primary human keratinocyte senescence. Primary keratinocytes from three patients with CS-A displayed premature aging features, namely premature clonal conversion, high steady-state levels of reactive oxygen species and 8-OH-hydroxyguanine, and senescence-associated secretory phenotype. Stable transduction of CS-A keratinocytes with the wild-type CSA gene restored the normal cellular sensitivity to UV irradiation and normal 8-OH-hydroxyguanine levels. Gene correction was also characterized by proper restoration of keratinocyte clonogenic capacity and expression of clonal conversion key regulators (p16 and p63), decreased NF-κB activity and, in turn, the expression of its targets (NOX1 and MnSOD), and the secretion of senescence-associated secretory phenotype mediators. Overall, the CSA protein plays an important role in protecting cells from senescence by facilitating DNA damage processing, maintaining physiological redox status and keratinocyte clonogenic ability, and reducing the senescence-associated secretory phenotype-mediated inflammatory phenotype.


Subject(s)
Cockayne Syndrome/genetics , DNA Repair Enzymes/genetics , DNA/genetics , Gene Expression Regulation , Keratinocytes/metabolism , Oxidative Stress , Skin Aging/genetics , Transcription Factors/genetics , Cells, Cultured , Cockayne Syndrome/metabolism , Cockayne Syndrome/pathology , DNA Damage , DNA Repair , DNA Repair Enzymes/biosynthesis , Humans , Keratinocytes/pathology , Transcription Factors/biosynthesis
4.
J Med Genet ; 55(5): 329-343, 2018 05.
Article in English | MEDLINE | ID: mdl-29572252

ABSTRACT

BACKGROUND: Cockayne syndrome (CS) is a rare, autosomal recessive multisystem disorder characterised by prenatal or postnatal growth failure, progressive neurological dysfunction, ocular and skeletal abnormalities and premature ageing. About half of the patients with symptoms diagnostic for CS show cutaneous photosensitivity and an abnormal cellular response to UV light due to mutations in either the ERCC8/CSA or ERCC6/CSB gene. Studies performed thus far have failed to delineate clear genotype-phenotype relationships. We have carried out a four-centre clinical, molecular and cellular analysis of 124 patients with CS. METHODS AND RESULTS: We assigned 39 patients to the ERCC8/CSA and 85 to the ERCC6/CSB genes. Most of the genetic variants were truncations. The missense variants were distributed non-randomly with concentrations in relatively short regions of the respective proteins. Our analyses revealed several hotspots and founder mutations in ERCC6/CSB. Although no unequivocal genotype-phenotype relationships could be made, patients were more likely to have severe clinical features if the mutation was downstream of the PiggyBac insertion in intron 5 of ERCC6/CSB than if it was upstream. Also a higher proportion of severely affected patients was found with mutations in ERCC6/CSB than in ERCC8/CSA. CONCLUSION: By identifying >70 novel homozygous or compound heterozygous genetic variants in 124 patients with CS with different disease severity and ethnic backgrounds, we considerably broaden the CSA and CSB mutation spectrum responsible for CS. Besides providing information relevant for diagnosis of and genetic counselling for this devastating disorder, this study improves the definition of the puzzling genotype-phenotype relationships in patients with CS.


Subject(s)
Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Photosensitivity Disorders/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Transcription Factors/genetics , Adolescent , Adult , Child , Child, Preschool , Cockayne Syndrome/physiopathology , Cohort Studies , Female , Genetic Predisposition to Disease , Humans , Infant , Introns/genetics , Male , Mutation, Missense/genetics , Photosensitivity Disorders/physiopathology , Pregnancy , Ultraviolet Rays , Young Adult
5.
Oncotarget ; 8(61): 102852-102867, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29262528

ABSTRACT

The ERCC8/CSA gene encodes a WD-40 repeat protein (CSA) that is part of a E3-ubiquitin ligase/COP9 signalosome complex. When mutated, CSA causes the Cockayne Syndrome group A (CS-A), a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. CS-A cells features include ROS hyperproduction, accumulation of oxidative genome damage, mitochondrial dysfunction and increased apoptosis that may contribute to the neurodegenerative process. In this study, we show that CSA localizes to mitochondria and specifically interacts with the mitochondrial fission protein dynamin-related protein (DRP1) that is hyperactivated when CSA is defective. Increased fission is not counterbalanced by increased mitophagy in CS-A cells thus leading to accumulation of fragmented mitochondria. However, when mitochondria are challenged with the mitochondrial toxin carbonyl cyanide m-chloro phenyl hydrazine, CS-A fibroblasts undergo mitophagy as efficiently as normal fibroblasts, suggesting that this process remains targetable to get rid of damaged mitochondria. Indeed, when basal mitophagy was potentiated by overexpressing Parkin in CSA deficient cells, a significant rescue of the dysfunctional mitochondrial phenotype was observed. Importantly, Parkin overexpression not only reactivates basal mitophagy, but plays also an anti-apoptotic role by significantly reducing the translocation of Bax at mitochondria in CS-A cells. These findings provide new mechanistic insights into the role of CSA in mitochondrial maintenance and might open new perspectives for therapeutic approaches.

6.
Am J Hum Genet ; 98(4): 627-42, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26996949

ABSTRACT

The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEß). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEß) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP.


Subject(s)
Cyclin-Dependent Kinases/genetics , DNA Repair , Transcription Factors, TFII/genetics , Trichothiodystrophy Syndromes/genetics , Amino Acid Sequence , Cyclin-Dependent Kinases/metabolism , DNA Damage , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Silencing , Humans , Infant , Male , Molecular Sequence Data , Mutation, Missense , Pedigree , Phosphorylation , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , Transcription Factors, TFII/metabolism , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/metabolism , Cyclin-Dependent Kinase-Activating Kinase
7.
Proc Natl Acad Sci U S A ; 113(9): E1236-45, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26884178

ABSTRACT

Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK national multidisciplinary XP service has provided follow-up for 89 XP patients, representing most of the XP patients in the United Kingdom. Causative mutations, DNA repair levels, and more than 60 clinical variables relating to dermatology, ophthalmology, and neurology have been measured, using scoring systems to categorize disease severity. This deep phenotyping has revealed unanticipated heterogeneity of clinical features, between and within complementation groups. Skin cancer is most common in XP-C, XP-E, and XP-V patients, previously considered to be the milder groups based on cellular analyses. These patients have normal sunburn reactions and are therefore diagnosed later and are less likely to adhere to UVR protection. XP-C patients are specifically hypersensitive to ocular damage, and XP-F and XP-G patients appear to be much less susceptible to skin cancer than other XP groups. Within XP groups, different mutations confer susceptibility or resistance to neurological damage. Our findings on this large cohort of XP patients under long-term follow-up reveal that XP is more heterogeneous than has previously been appreciated. Our data now enable provision of personalized prognostic information and management advice for each XP patient, as well as providing new insights into the functions of the XP proteins.


Subject(s)
Xeroderma Pigmentosum/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Heterogeneity , Humans , Infant , Male , Middle Aged , Phenotype , United Kingdom , Young Adult
8.
Exp Dermatol ; 24(4): 314-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25651864

ABSTRACT

Abnormalities in keratinocyte growth and differentiation have a pathogenic significance in many skin disorders and result in gene expression alterations detectable by quantitative real-time RT-PCR (qRT-PCR). Relative quantification based on endogenous control (EC) genes is the commonly adopted approach, and the use of multiple reference genes from independent pathways is considered a best practice guideline, unless fully validated EC genes are available. The literature on optimal reference genes during in vitro calcium-induced differentiation of normal human epidermal keratinocytes (NHEK) is inconsistent. In many studies, the expression of target genes is compared to that of housekeeping genes whose expression, however, significantly varies during keratinocyte differentiation. Here, we report the results of our investigations on the expression stability of 15 candidate EC genes, including those commonly used as reference in expression analysis by qRT-PCR, during NHEK calcium-induced differentiation. We demonstrate that YWHAZ and UBC are extremely stable genes, and therefore, they represent optimal EC genes for expression studies in proliferating and calcium-induced differentiating NHEK. Furthermore, we demonstrate that YWHAZ/14-3-3-zeta is a suitable reference for quantitative comparison of both transcript and protein levels.


Subject(s)
Keratinocytes/cytology , Keratinocytes/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Gene Expression Profiling , Humans , Real-Time Polymerase Chain Reaction
9.
Proc Natl Acad Sci U S A ; 112(5): 1499-504, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25605938

ABSTRACT

Mutations in the XPD subunit of the DNA repair/transcription factor TFIIH result in distinct clinical entities, including the cancer-prone xeroderma pigmentosum (XP) and the multisystem disorder trichothiodystrophy (TTD), which share only cutaneous photosensitivity. Gene-expression profiles of primary dermal fibroblasts revealed overexpression of matrix metalloproteinase 1 (MMP-1), the gene encoding the metalloproteinase that degrades the interstitial collagens of the extracellular matrix (ECM), in TTD patients mutated in XPD compared with their healthy parents. The defect is observed in TTD and not in XP and is specific for fibroblasts, which are the main producers of dermal ECM. MMP-1 transcriptional up-regulation in TTD is caused by an erroneous signaling mediated by retinoic acid receptors on the MMP-1 promoter and leads to hypersecretion of active MMP-1 enzyme and degradation of collagen type I in the ECM of cell/tissue systems and TTD patient skin. In agreement with the well-known role of ECM in eliciting signaling events controlling cell behavior and tissue homeostasis, ECM alterations in TTD were shown to impact on the migration and wound-healing properties of patient dermal fibroblasts. The presence of a specific inhibitor of MMP activity was sufficient to restore normal cell migration, thus providing a potential approach for therapeutic strategies. This study highlights the relevance of ECM anomalies in TTD pathogenesis and in the phenotypic differences between TTD and XP.


Subject(s)
Extracellular Matrix/pathology , Matrix Metalloproteinase 1/metabolism , Transcription Factor TFIIH/physiology , Trichothiodystrophy Syndromes/enzymology , Humans , Matrix Metalloproteinase 1/genetics , Promoter Regions, Genetic , Receptors, Retinoic Acid/metabolism , Trichothiodystrophy Syndromes/pathology , Wound Healing
10.
PLoS Genet ; 9(7): e1003611, 2013.
Article in English | MEDLINE | ID: mdl-23861670

ABSTRACT

UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase DOT1L in mouse embryonic fibroblasts (MEF(DOT1L)) leads to a UV hypersensitivity coupled to a deficient recovery of transcription initiation after UV irradiation. However, DOT1L is not implicated in the removal of the UV-induced DNA damage by the nucleotide excision repair pathway. Using FRAP and ChIP experiments we established that DOT1L promotes the formation of the pre-initiation complex on the promoters of UV-repressed genes and the appearance of transcriptionally active chromatin marks. Treatment with Trichostatin A, relaxing chromatin, recovers both transcription initiation and UV-survival. Our data suggest that DOT1L secures an open chromatin structure in order to reactivate RNA Pol II transcription initiation after a genotoxic attack.


Subject(s)
Chromatin/genetics , DNA Damage/genetics , Methyltransferases/genetics , Animals , Chromatin/radiation effects , DNA Repair/genetics , Gene Expression Regulation/drug effects , Histone-Lysine N-Methyltransferase , Hydroxamic Acids/pharmacology , Hypersensitivity , Mice , Mice, Knockout , RNA Polymerase II/metabolism , Transcriptional Activation , Ultraviolet Rays
11.
Am J Hum Genet ; 92(5): 807-19, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23623389

ABSTRACT

Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.


Subject(s)
Cockayne Syndrome/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Fanconi Anemia/genetics , Genetic Predisposition to Disease/genetics , Phenotype , Xeroderma Pigmentosum/genetics , Amino Acid Sequence , Base Sequence , Cockayne Syndrome/enzymology , Cockayne Syndrome/pathology , DNA Primers/genetics , Fanconi Anemia/enzymology , Fanconi Anemia/pathology , Fatal Outcome , Female , Humans , Male , Molecular Sequence Data , Sequence Analysis, DNA , Xeroderma Pigmentosum/enzymology , Xeroderma Pigmentosum/pathology
12.
Mech Ageing Dev ; 134(5-6): 171-9, 2013.
Article in English | MEDLINE | ID: mdl-23567079

ABSTRACT

The significant progress made over the last few years on the pathogenesis of Cockayne syndrome (CS) greatly improved our knowledge on several aspects crucial for development and ageing, demonstrating that this disorder, even if rare, represents a valuable tool to clarify key aspects of human health. Primary cells from patients have been instrumental to elucidate the multiple roles of CS proteins and to approach the dissection of the complex interplay between repair and transcription that is central to the CS clinical phenotype. Here we discuss the results of the cellular assays applied for confirmation of the clinical diagnosis as well as the results of genetic and molecular studies in DNA repair defective patients. Furthermore, we provide a general overview of recent in vivo and in vitro studies indicating that both CSA and CSB proteins are involved in distinct aspects of the cellular responses to UV and oxidative stress, transcription and regulation of gene expression, chromatin remodelling, redox balance and cellular bioenergetics. In light of the literature data, we will finally discuss how inactivation of specific functional roles of CS proteins may differentially affect the phenotype, thus explaining the wide range in type and severity of symptoms reported in CS patients.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , DNA Repair , Transcription Factors , Transcription, Genetic/genetics , Animals , Chromatin Assembly and Disassembly/radiation effects , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , Cockayne Syndrome/pathology , DNA Helicases/biosynthesis , DNA Helicases/genetics , DNA Repair Enzymes/biosynthesis , DNA Repair Enzymes/genetics , Humans , Oxidative Stress/genetics , Oxidative Stress/radiation effects , Poly-ADP-Ribose Binding Proteins , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transcription, Genetic/radiation effects , Ultraviolet Rays/adverse effects
13.
Hum Mol Genet ; 22(6): 1061-73, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23221806

ABSTRACT

Mutations in the XPD subunit of the transcription/DNA repair factor (TFIIH) give rise to trichothiodystrophy (TTD), a rare hereditary multisystem disorder with skin abnormalities. Here, we show that TTD primary dermal fibroblasts contain low amounts of collagen type VI alpha1 subunit (COL6A1), a fundamental component of soft connective tissues. We demonstrate that COL6A1 expression is downregulated by the sterol regulatory element-binding protein-1 (SREBP-1) whose removal from the promoter is a key step in COL6A1 transcription upregulation in response to cell confluence. We provide evidence for TFIIH being involved in transcription derepression, thus highlighting a new function of TFIIH in gene expression regulation. The lack of COL6A1 upregulation in TTD is caused by the inability of the mutated TFIIH complexes to remove SREBP-1 from COL6A1 promoter and to sustain the subsequent high rate of COL6A1 transcription. This defect might account for the pathologic features that TTD shares with hereditary disorders because of mutations in COL6A genes.


Subject(s)
Collagen Type VI/genetics , Down-Regulation , Transcription Factor TFIIH/metabolism , Transcription, Genetic , Trichothiodystrophy Syndromes/genetics , Xeroderma Pigmentosum Group D Protein/genetics , Collagen Type VI/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Transcription Factor TFIIH/genetics , Trichothiodystrophy Syndromes/metabolism , Xeroderma Pigmentosum Group D Protein/metabolism
14.
Hum Mutat ; 34(3): 481-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23255472

ABSTRACT

Nucleotide excision repair (NER) is the most flexible of all known DNA-repair mechanisms, and XPG is a 3'-endonuclease that participates in NER. Mutations in this gene (ERCC5) may result in the human syndrome xeroderma pigmentosum (XP) and, in some cases, in the complex phenotype of Cockayne syndrome (CS). Two Brazilian XP siblings, who were mildly affected, were investigated and classified into the XP-G group. The cells from these patients were highly ultraviolet (UV) sensitive but not sensitive to photosensitized methylene blue, an agent that causes oxidative stress. This phenotype is in contrast to XP-G/CS cells, which are highly sensitive to this oxidative agent. Sequencing revealed a compound heterozygous genotype with two novel missense mutations: c.83C>A (p.Ala28Asp) and c.2904G>C (p.Trp968Cys). The first mutation maps to the catalytic site of the XPG protein, whereas the second may compromise binding to DNA. Functional assays indicated that the mutated alleles were unable to perform the complete repair of UV-irradiated plasmids; however, full correction was observed for oxidatively damaged plasmids. Therefore, the XP phenotype of these patients is caused by novel missense mutations that specifically affect DNA repair for UV- but not oxidative-stress-induced DNA damage, and implications for XP versus XP/CS phenotype are discussed.


Subject(s)
Cell Survival/radiation effects , DNA Repair/radiation effects , DNA-Binding Proteins/genetics , Endonucleases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Adolescent , Alleles , Amino Acid Sequence , Brazil , Cell Line , Cloning, Molecular , Cockayne Syndrome/genetics , DNA Damage/radiation effects , Female , Fibroblasts/cytology , Fibroblasts/radiation effects , Heterozygote , Humans , Male , Molecular Sequence Data , Mutation, Missense , Oxidative Stress/radiation effects , Phenotype , Protein Conformation , Sequence Alignment , Sequence Analysis, DNA , Ultraviolet Rays , Xeroderma Pigmentosum/genetics , Young Adult
15.
Nat Genet ; 44(5): 586-92, 2012 May.
Article in English | MEDLINE | ID: mdl-22466610

ABSTRACT

UV-sensitive syndrome (UV(S)S) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma. Despite mild clinical features, cells from individuals with UV(S)S, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER), which removes DNA damage in actively transcribed genes. Three of the seven known UV(S)S cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively). The remaining four individuals with UVSS , one of whom is described for the first time here, formed a separate UV(S)S-A complementation group; however, the responsible gene was unknown. Using exome sequencing, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UV(S)S-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER­deficient disorders.


Subject(s)
Carrier Proteins/genetics , Cockayne Syndrome/genetics , DNA Damage/genetics , DNA Repair/genetics , Mutation/genetics , RNA Polymerase II/genetics , Transcription, Genetic , Ultraviolet Rays , DNA Damage/radiation effects , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Repair/radiation effects , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/genetics , Exome/genetics , Humans , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics
16.
Aging Cell ; 11(3): 520-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22404840

ABSTRACT

Cockayne syndrome (CS) is a rare hereditary multisystem disease characterized by neurological and development impairment, and premature aging. Cockayne syndrome cells are hypersensitive to oxidative stress, but the molecular mechanisms involved remain unresolved. Here we provide the first evidence that primary fibroblasts derived from patients with CS-A and CS-B present an altered redox balance with increased steady-state levels of intracellular reactive oxygen species (ROS) and basal and induced DNA oxidative damage, loss of the mitochondrial membrane potential, and a significant decrease in the rate of basal oxidative phosphorylation. The Na/K-ATPase, a relevant target of oxidative stress, is also affected with reduced transcription in CS fibroblasts and normal protein levels restored upon complementation with wild-type genes. High-resolution magnetic resonance spectroscopy revealed a significantly perturbed metabolic profile in CS-A and CS-B primary fibroblasts compared with normal cells in agreement with increased oxidative stress and alterations in cell bioenergetics. The affected processes include oxidative metabolism, glycolysis, choline phospholipid metabolism, and osmoregulation. The alterations in intracellular ROS content, oxidative DNA damage, and metabolic profile were partially rescued by the addition of an antioxidant in the culture medium suggesting that the continuous oxidative stress that characterizes CS cells plays a causative role in the underlying pathophysiology. The changes of oxidative and energy metabolism offer a clue for the clinical features of patients with CS and provide novel tools valuable for both diagnosis and therapy.


Subject(s)
Cockayne Syndrome/metabolism , Fibroblasts/metabolism , Oxidative Stress/physiology , Aging, Premature/genetics , Aging, Premature/metabolism , Aging, Premature/pathology , Cockayne Syndrome/genetics , Cockayne Syndrome/pathology , DNA Damage , DNA Repair , Fibroblasts/pathology , Humans , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Phosphorylation
17.
Orphanet J Rare Dis ; 6: 70, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22044607

ABSTRACT

Xeroderma pigmentosum (XP) is defined by extreme sensitivity to sunlight, resulting in sunburn, pigment changes in the skin and a greatly elevated incidence of skin cancers. It is a rare autosomal recessive disorder and has been found in all continents and racial groups. Estimated incidences vary from 1 in 20, 000 in Japan to 1 in 250, 000 in the USA, and approximately 2.3 per million live births in Western Europe.The first features are either extreme sensitivity to sunlight, triggering severe sunburn, or, in patients who do not show this sun-sensitivity, abnormal lentiginosis (freckle-like pigmentation due to increased numbers of melanocytes) on sun-exposed areas. This is followed by areas of increased or decreased pigmentation, skin aging and multiple skin cancers, if the individuals are not protected from sunlight. A minority of patients show progressive neurological abnormalities. There are eight XP complementation groups, corresponding to eight genes, which, if defective, can result in XP. The products of these genes are involved in the repair of ultraviolet (UV)-induced damage in DNA. Seven of the gene products (XPA through G) are required to remove UV damage from the DNA. The eighth (XPV or DNA polymerase η) is required to replicate DNA containing unrepaired damage. There is wide variability in clinical features both between and within XP groups. Diagnosis is made clinically by the presence, from birth, of an acute and prolonged sunburn response at all exposed sites, unusually early lentiginosis in sun-exposed areas or onset of skin cancers at a young age. The clinical diagnosis is confirmed by cellular tests for defective DNA repair. These features distinguish XP from other photodermatoses such as solar urticaria and polymorphic light eruption, Cockayne Syndrome (no pigmentation changes, different repair defect) and other lentiginoses such as Peutz-Jeghers syndrome, Leopard syndrome and Carney complex (pigmentation not sun-associated), which are inherited in an autosomal dominant fashion. Antenatal diagnosis can be performed by measuring DNA repair or by mutation analysis in CVS cells or in amniocytes. Although there is no cure for XP, the skin effects can be minimised by rigorous protection from sunlight and early removal of pre-cancerous lesions. In the absence of neurological problems and with lifetime protection against sunlight, the prognosis is good. In patients with neurological problems, these are progressive, leading to disabilities and a shortened lifespan.


Subject(s)
Xeroderma Pigmentosum , DNA Repair/genetics , Europe/epidemiology , Humans , Japan/epidemiology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Nervous System Diseases/therapy , United States/epidemiology , Xeroderma Pigmentosum/diagnosis , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/pathology , Xeroderma Pigmentosum/therapy
18.
Cell Cycle ; 10(21): 3719-30, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22032989

ABSTRACT

Mutations in Cockayne syndrome (CS) A and B genes (CSA and CSB) result in a rare genetic disease that affects the development and homeostasis of a wide range of tissues and organs. We previously correlated the degenerative phenotype of patients to the enhanced apoptotic response, exhibited by CS cells, which is associated with the exceptional induction of p53 protein, upon a variety of stress stimuli. Here we showed that the elevated and persistent levels of p53 displayed by CS cells are due to the insufficient ubiquitination of the p53 protein. We further demonstrated that CSA and CSB proteins associate in a unique complex with p53 and Mdm2; this interaction greatly stimulates the ubiquitination of p53 in an Mdm2-dependent manner. Tandem affinity purification and immunoprecipitations combined with mass spectrometry studies indicate that CSA and CSB associate within a Cullin Ring Ubiquitin Ligase complex responsible, under certain circumstances, for p53 ubiquitination. This study identifies CSA and CSB as the key elements of a regulatory mechanism that equilibrate beneficial and detrimental effects of p53 activity upon cellular stress. The deregulation of p53, in absence of either of the CS proteins, can potentially explain the early onset degeneration of tissues and organs observed in CS patients.


Subject(s)
Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Proto-Oncogene Proteins c-mdm2/physiology , Transcription Factors/genetics , Tumor Suppressor Protein p53/physiology , Cockayne Syndrome/pathology , DNA Helicases/metabolism , DNA Helicases/physiology , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/physiology , Feedback, Physiological , Gene Expression Regulation , Humans , Poly-ADP-Ribose Binding Proteins , Promoter Regions, Genetic , Proto-Oncogene Proteins c-mdm2/metabolism , Stress, Physiological , Transcription Factors/metabolism , Transcription Factors/physiology , Tumor Suppressor Protein p53/metabolism , Ubiquitination
19.
J Invest Dermatol ; 130(4): 1048-62, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19907431

ABSTRACT

Accumulation of senescent cells contributes to the reduced regenerative capacity in aged tissues. By evaluating the molecular pathways of senescence in relation to proliferative potential of primary keratinocyte cultures from young and old healthy donors, and from young patients with inherited defects leading to premature aging, we demonstrated that p16(INK4a) is a reliable marker of both physiological and premature epidermal aging. Analysis of the expression and activity of p16(INK4a) regulators showed that stem cell depletion, reduced proliferation, and p16(INK4a) upregulation in keratinocytes derived from the chronologically and prematurely aged epidermis strongly correlate with Bmi-1 downregulation. In highly proliferative tissues, replicative and premature senescence participate in determining senescent cell accumulation. Our findings demonstrated that Bmi-1 is downregulated in human keratinocytes during both in vitro processes, in parallel with p16(INK4a) upregulation and accomplishment of clonal conversion. When premature senescence was induced by specific exogenous stimuli, concomitant Ets-1 upregulation was also observed. Moreover, Bmi-1 inhibited Ets-1-mediated p16(INK4a) upregulation. Finally, Bmi-1 overexpression reduced p16(INK4a) promoter activity and decreased protein expression in aged and diseased keratinocytes, inducing a delay of clonal conversion and an increase of cell clonogenic ability. Altogether these findings underline a key role of Bmi-1 downregulation in enforcing aging in primary human keratinocytes.


Subject(s)
Aging, Premature/pathology , Aging, Premature/physiopathology , Keratinocytes/cytology , Keratinocytes/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cells, Cultured , Cellular Senescence/physiology , Child , Child, Preschool , Coculture Techniques , Culture Media, Serum-Free/pharmacology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Down-Regulation/physiology , Epidermal Cells , Epidermis/physiology , Gene Expression/physiology , Humans , Inhibitor of Differentiation Protein 1/metabolism , Middle Aged , Oxidative Stress/physiology , Polycomb Repressive Complex 1 , Proto-Oncogene Protein c-ets-1/metabolism , Stromal Cells/cytology , Stromal Cells/physiology , Up-Regulation/physiology , Young Adult
20.
Proc Natl Acad Sci U S A ; 106(15): 6209-14, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19329487

ABSTRACT

UV-sensitive syndrome (UV(S)S) is a recently-identified autosomal recessive disorder characterized by mild cutaneous symptoms and defective transcription-coupled repair (TC-NER), the subpathway of nucleotide excision repair (NER) that rapidly removes damage that can block progression of the transcription machinery in actively-transcribed regions of DNA. Cockayne syndrome (CS) is another genetic disorder with sun sensitivity and defective TC-NER, caused by mutations in the CSA or CSB genes. The clinical hallmarks of CS include neurological/developmental abnormalities and premature aging. UV(S)S is genetically heterogeneous, in that it appears in individuals with mutations in CSB or in a still-unidentified gene. We report the identification of a UV(S)S patient (UV(S)S1VI) with a novel mutation in the CSA gene (p.trp361cys) that confers hypersensitivity to UV light, but not to inducers of oxidative damage that are notably cytotoxic in cells from CS patients. The defect in UV(S)S1VI cells is corrected by expression of the WT CSA gene. Expression of the p.trp361cys-mutated CSA cDNA increases the resistance of cells from a CS-A patient to oxidative stress, but does not correct their UV hypersensitivity. These findings imply that some mutations in the CSA gene may interfere with the TC-NER-dependent removal of UV-induced damage without affecting its role in the oxidative stress response. The differential sensitivity toward oxidative stress might explain the difference between the range and severity of symptoms in CS and the mild manifestations in UV(s)S patients that are limited to skin photosensitivity without precocious aging or neurodegeneration.


Subject(s)
Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , DNA Damage/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ultraviolet Rays , Adolescent , Cells, Cultured , Child , Cockayne Syndrome/pathology , Female , Humans , Infant , Mutation/genetics , Oxidation-Reduction , Oxidative Stress/genetics , Sensitivity and Specificity , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...