Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(4): 197, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38483622

ABSTRACT

A fully reusable electrochemical device is proposed for the first time made from laser cutting and a homemade conductive ink composed of carbon and nail polish. As a sensor substrate, we applied polymethyl methacrylate, which allows the surface to be renewed by simply removing and reapplying a new layer of ink. In addition to the ease of renewing the sensor's conductive surface, the design of the device has allowed for the integration of different forms of analysis. The determination of L-Dopa was performed using DPV, which presented a linear response range between 5.0 and 1000.0 µmol L-1, and a LOD of 0.11 µmol L-1. For dopamine, a flow injection analysis system was employed, and using the amperometric technique measurements were performed with a linear ranging from 2.0 to 100.0 µmol L-1 and a LOD of 0.26 µmol L-1. To demonstrate its applicability, the device was used in the quantification of analytes in pharmaceutical drug and synthetic urine samples.


Subject(s)
Graphite , Levodopa , Levodopa/analysis , Dopamine/analysis , Electrochemical Techniques/methods , Electrodes , Reproducibility of Results
2.
Mikrochim Acta ; 189(11): 414, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36217039

ABSTRACT

The development of a homemade carbon black composite filament with polylactic acid (CB-PLA) is reported. Optimized filaments containing 28.5% wt. of carbon black were obtained and employed in the 3D printing of improved electrochemical sensors by fused deposition modeling (FDM) technique. The fabricated filaments were used to construct a simple electrochemical system, which was explored for detecting catechol and hydroquinone in water samples and detecting hydrogen peroxide in milk. The determination of catechol and hydroquinone was successfully performed by differential pulse voltammetry, presenting LOD values of 0.02 and 0.22 µmol L-1, respectively, and recovery values ranging from 91.1 to 112% in tap water. Furthermore, the modification of CB-PLA electrodes with Prussian blue allowed the non-enzymatic amperometric detection of hydrogen peroxide at 0.0 V (vs. carbon black reference electrode) in milk samples, with a linear range between 5.0 and 350.0 mol L-1 and low limit of detection (1.03 µmol L-1). Thus, CB-PLA can be successfully applied as additively manufactured electrochemical sensors, and the easy filament manufacturing process allows for its exploration in a diversity of applications.


Subject(s)
Hydroquinones , Soot , Catechols/analysis , Hydrogen Peroxide , Hydroquinones/analysis , Polyesters , Water
3.
Anal Chem ; 94(17): 6417-6429, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35348329

ABSTRACT

The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.


Subject(s)
Printing, Three-Dimensional , Clinical Protocols , Electrodes
4.
Anal Chim Acta ; 1191: 339372, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35033268

ABSTRACT

The 3D printing technology has gained ground due to its wide range of applicability. The development of new conductive filaments contributes significantly to the production of improved electrochemical devices. In this context, we report a simple method to producing an efficient conductive filament, containing graphite within the polymer matrix of PLA, and applied in conjunction with 3D printing technology to generate (bio)sensors without the need for surface activation. The proposed method for producing the conductive filament consists of four steps: (i) mixing graphite and PLA in a heated reflux system; (ii) recrystallization of the composite; (iii) drying and; (iv) extrusion. The produced filament was used for the manufacture of electrochemical 3D printed sensors. The filament and sensor were characterized by physicochemical techniques, such as SEM, TGA, Raman, FTIR as well as electrochemical techniques (EIS and CV). Finally, as a proof-of-concept, the fabricated 3D-printed sensor was applied for the determination of uric acid and dopamine in synthetic urine and used as a platform for the development of a biosensor for the detection of SARS-CoV-2. The developed sensors, without pre-treatment, provided linear ranges of 0.5-150.0 and 5.0-50.0 µmol L-1, with low LOD values (0.07 and 0.11 µmol L-1), for uric acid and dopamine, respectively. The developed biosensor successfully detected SARS-CoV-2 S protein, with a linear range from 5.0 to 75.0 nmol L-1 (0.38 µg mL-1 to 5.74 µg mL-1) and LOD of 1.36 nmol L-1 (0.10 µg mL-1) and sensitivity of 0.17 µA nmol-1 L (0.01 µA µg-1 mL). Therefore, the lab-made produced and the ready-to-use conductive filament is promising and can become an alternative route for the production of different 3D electrochemical (bio)sensors and other types of conductive devices by 3D printing.


Subject(s)
COVID-19 , SARS-CoV-2 , Electric Conductivity , Humans , Printing, Three-Dimensional , Spike Glycoprotein, Coronavirus
5.
Anal Chim Acta ; 1159: 338384, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33867035

ABSTRACT

Viruses are the causing agents for many relevant diseases, including influenza, Ebola, HIV/AIDS, and COVID-19. Its rapid replication and high transmissibility can lead to serious consequences not only to the individual but also to collective health, causing deep economic impacts. In this scenario, diagnosis tools are of significant importance, allowing the rapid, precise, and low-cost testing of a substantial number of individuals. Currently, PCR-based techniques are the gold standard for the diagnosis of viral diseases. Although these allow the diagnosis of different illnesses with high precision, they still present significant drawbacks. Their main disadvantages include long periods for obtaining results and the need for specialized professionals and equipment, requiring the tests to be performed in research centers. In this scenario, biosensors have been presented as promising alternatives for the rapid, precise, low-cost, and on-site diagnosis of viral diseases. This critical review article describes the advancements achieved in the last five years regarding electrochemical biosensors for the diagnosis of viral infections. First, genosensors and aptasensors for the detection of virus and the diagnosis of viral diseases are presented in detail regarding probe immobilization approaches, detection methods (label-free and sandwich), and amplification strategies. Following, immunosensors are highlighted, including many different construction strategies such as label-free, sandwich, competitive, and lateral-flow assays. Then, biosensors for the detection of viral-diseases-related biomarkers are presented and discussed, as well as point of care systems and their advantages when compared to traditional techniques. Last, the difficulties of commercializing electrochemical devices are critically discussed in conjunction with future trends such as lab-on-a-chip and flexible sensors.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Virus Diseases/diagnosis , Viruses/isolation & purification , Humans , Immunoassay
SELECTION OF CITATIONS
SEARCH DETAIL
...