Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-452076

ABSTRACT

Since its emergence in late 2019, the diffusion of SARS-CoV-2 is associated with the evolution of its viral genome1,2. The co-occurrence of specific amino acid changes, collectively named virus variant, requires scrutiny (as variants may hugely impact the agents transmission, pathogenesis, or antigenicity); variant evolution is studied using phylogenetics3-6. Yet, never has this problem been tackled by digging into data with ad hoc analysis techniques. Here we show that the emergence of variants can in fact be traced through data-driven methods, further capitalizing on the value of large collections of SARS-CoV-2 sequences. For all countries with sufficient data, we compute weekly counts of amino acid changes, unveil time-varying clusters of changes with similar - rapidly growing - dynamics, and then follow their evolution. Our method succeeds in timely associating clusters to variants of interest/concern, provided their change composition is well characterized. This allows us to detect variants emergence, rise, peak, and eventual decline under competitive pressure of another variant. Our early warning system, exclusively relying on deposited sequences, shows the power of big data in this context, and concurs to calling for the wide spreading of public SARS-CoV-2 genome sequencing for improved surveillance and control of the COVID-19 pandemic.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21250593

ABSTRACT

Host genetics is an emerging theme in COVID-19 and few common polymorphisms and some rare variants have been identified, either by GWAS or candidate gene approach, respectively. However, an organic model is still missing. Here, we propose a new model that takes into account common and rare germline variants applied in a cohort of 1,300 Italian SARS-CoV-2 positive individuals. Ordered logistic regression of clinical WHO grading on sex and age was used to obtain a binary phenotypic classification. Genetic variability from WES was synthesized in several boolean representations differentiated according to allele frequencies and genotype effect. LASSO logistic regression was used for extracting relevant genes. We defined about 100 common driver polymorphisms corresponding to classical "threshold model". Extracted genes were demonstrated to be gender specific. Stochastic rare more penetrant events on about additional 100 extracted genes, when occurred in a medium or severe background (common within the family), simulate Mendelian inheritance in 14% of subjects (having only 1 mutation) or oligogenic inheritance (in 10% having 2 mutations, in 11% having 3 mutations, etc). The combined effect of common and rare results can be described as an integrated polygenic score computed as: (nseverity - nmildness) + F (mseverity - mmildness) where n is the number of common driver genes, m is the number of driver rare variants and F is a factor for appropriately weighing the more powerful rare variants. We called the model "post-Mendelian". The model well describes the cohort, and patients are clustered in severe or mild by the integrated polygenic scores, the F factor being calibrated around 2, with a prediction capacity of 65% in males and 70% in females. In conclusion, this is the first comprehensive model interpreting host genetics in a holistic post-Mendelian manner. Further validations are needed in order to consolidate and refine the model which however holds true in thousands of SARS-CoV-2 Italian subjects.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20161307

ABSTRACT

Within the GEN-COVID Multicenter Study, biospecimens from more than 1,000 SARS-CoV-2-positive individuals have thus far been collected in the GEN-COVID Biobank (GCB). Sample types include whole blood, plasma, serum, leukocytes, and DNA. The GCB links samples to detailed clinical data available in the GEN-COVID Patient Registry (GCPR). It includes hospitalized patients (74.25%), broken down into intubated, treated by CPAP-biPAP, treated with O2 supplementation, and without respiratory support (9.5%, 18.4%, 31.55% and 14.8, respectively); and non-hospitalized subjects (25.75%), either pauci- or asymptomatic. More than 150 clinical patient-level data fields have been collected and binarized for further statistics according to the organs/systems primarily affected by COVID-19: heart, liver, pancreas, kidney, chemosensors, innate or adaptive immunity, and clotting system. Hierarchical Clustering analysis identified five main clinical categories: i) severe multisystemic failure with either thromboembolic or pancreatic variant; ii) cytokine storm type, either severe with liver involvement or moderate; iii) moderate heart type, either with or without liver damage; iv) moderate multisystemic involvement, either with or without liver damage; v) mild, either with or without hyposmia. GCB and GCPR are further linked to the GEN-COVID Genetic Data Repository (GCGDR), which includes data from Whole Exome Sequencing and high-density SNP genotyping. The data are available for sharing through the Network for Italian Genomes, found within the COVID-19 dedicated section. The study objective is to systematize this comprehensive data collection and begin identifying multi-organ involvement in COVID-19, defining genetic parameters for infection susceptibility within the population and mapping genetically COVID-19 severity and clinical complexity among patients.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-067637

ABSTRACT

The pandemic outbreak of the coronavirus disease has attracted attention towards the genetic mechanisms of viruses. We hereby present the Viral Conceptual Model (VCM), centered on the virus sequence and described from four perspectives: biological (virus type and hosts/sample), analytical (annotations and variants), organizational (sequencing project) and technical (experimental technology). VCM is inspired by GCM, our previously developed Genomic Conceptual Model, but it introduces many novel concepts, as viral sequences significantly differ from human genomes. When applied to SARS-CoV2 virus, complex conceptual queries upon VCM are able to replicate the search results of recent articles, hence demonstrating huge potential in supporting virology research. In addition to VCM, we also illustrate the data dictionary for patients phenotype used by the COVID-19 Host Genetic Initiative. Our effort is part of a broad vision: availability of conceptual models for both human genomics and viruses will provide important opportunities for research, especially if interconnected by the same human being, playing the role of virus host as well as provider of genomic and phenotype information.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-772969

ABSTRACT

Transcriptional regulation is critical to cellular processes of all organisms. Regulatory mechanisms often involve more than one transcription factor (TF) from different families, binding together and attaching to the DNA as a single complex. However, only a fraction of the regulatory partners of each TF is currently known. In this paper, we present the Transcriptional Interaction and Coregulation Analyzer (TICA), a novel methodology for predicting heterotypic physical interaction of TFs. TICA employs a data-driven approach to infer interaction phenomena from chromatin immunoprecipitation and sequencing (ChIP-seq) data. Its prediction rules are based on the distribution of minimal distance couples of paired binding sites belonging to different TFs which are located closest to each other in promoter regions. Notably, TICA uses only binding site information from input ChIP-seq experiments, bypassing the need to do motif calling on sequencing data. We present our method and test it on ENCODE ChIP-seq datasets, using three cell lines as reference including HepG2, GM12878, and K562. TICA positive predictions on ENCODE ChIP-seq data are strongly enriched when compared to protein complex (CORUM) and functional interaction (BioGRID) databases. We also compare TICA against both motif/ChIP-seq based methods for physical TF-TF interaction prediction and published literature. Based on our results, TICA offers significant specificity (average 0.902) while maintaining a good recall (average 0.284) with respect to CORUM, providing a novel technique for fast analysis of regulatory effect in cell lines. Furthermore, predictions by TICA are complementary to other methods for TF-TF interaction prediction (in particular, TACO and CENTDIST). Thus, combined application of these prediction tools results in much improved sensitivity in detecting TF-TF interactions compared to TICA alone (sensitivity of 0.526 when combining TICA with TACO and 0.585 when combining with CENTDIST) with little compromise in specificity (specificity 0.760 when combining with TACO and 0.643 with CENTDIST). TICA is publicly available at http://geco.deib.polimi.it/tica/.


Subject(s)
Humans , Binding Sites , Chromatin Immunoprecipitation , Gene Expression Regulation , Hep G2 Cells , K562 Cells , Promoter Regions, Genetic , Sequence Analysis, DNA , Transcription Factors , Metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...