Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(11): 16554-16568, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32549475

ABSTRACT

Recently, Fourier light field microscopy was proposed to overcome the limitations in conventional light field microscopy by placing a micro-lens array at the aperture stop of the microscope objective instead of the image plane. In this way, a collection of orthographic views from different perspectives are directly captured. When inspecting fluorescent samples, the sensitivity and noise of the sensors are a major concern and large sensor pixels are required to cope with low-light conditions, which implies under-sampling issues. In this context, we analyze the sampling patterns in Fourier light field microscopy to understand to what extent computational super-resolution can be triggered during deconvolution in order to improve the resolution of the 3D reconstruction of the imaged data.

2.
Opt Express ; 27(22): 31644-31666, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31684394

ABSTRACT

The sampling patterns of the light field microscope (LFM) are highly depth-dependent, which implies non-uniform recoverable lateral resolution across depth. Moreover, reconstructions using state-of-the-art approaches suffer from strong artifacts at axial ranges, where the LFM samples the light field at a coarse rate. In this work, we analyze the sampling patterns of the LFM, and introduce a flexible light field point spread function model (LFPSF) to cope with arbitrary LFM designs. We then propose a novel aliasing-aware deconvolution scheme to address the sampling artifacts. We demonstrate the high potential of the proposed method on real experimental data.

3.
Nat Methods ; 14(11): 1079-1082, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28967889

ABSTRACT

A long-standing objective in neuroscience has been to image distributed neuronal activity in freely behaving animals. Here we introduce NeuBtracker, a tracking microscope for simultaneous imaging of neuronal activity and behavior of freely swimming fluorescent reporter fish. We showcase the value of NeuBtracker for screening neurostimulants with respect to their combined neuronal and behavioral effects and for determining spontaneous and stimulus-induced spatiotemporal patterns of neuronal activation during naturalistic behavior.


Subject(s)
Behavior, Animal , Fishes/physiology , Animals , Microscopy/methods , Neurons/physiology , Swimming/physiology
4.
IEEE Trans Image Process ; 25(7): 3384-3394, 2016 Jul.
Article in English | MEDLINE | ID: mdl-28113712

ABSTRACT

This paper presents a method for the simultaneous segmentation and regularization of a series of shapes from a corresponding sequence of images. Such series arise as time series of 2D images when considering video data, or as stacks of 2D images obtained by slicewise tomographic reconstruction. We first derive a model where the regularization of the shape signal is achieved by a total variation prior on the shape manifold. The method employs a modified Kendall shape space to facilitate explicit computations together with the concept of Sobolev gradients. For the proposed model, we derive an efficient and computationally accessible splitting scheme. Using a generalized forward-backward approach, our algorithm treats the total variation atoms of the splitting via proximal mappings, whereas the data terms are dealt with by gradient descent. The potential of the proposed method is demonstrated on various application examples dealing with 3D data. We explain how to extend the proposed combined approach to shape fields which, for instance, arise in the context of 3D+t imaging modalities, and show an application in this setup as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...