Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 89(8): 3075-86, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16840625

ABSTRACT

Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.


Subject(s)
Cattle/metabolism , Jejunum/metabolism , Lactoferrin/administration & dosage , Liver/metabolism , Protein Biosynthesis/physiology , Vitamin A/administration & dosage , Animals , Animals, Newborn/metabolism , Blood Proteins/analysis , Body Temperature , Body Weight , Breath Tests , Carbon Isotopes , Colostrum/immunology , Diet , Health Status , Immunoglobulins/administration & dosage , Jejunum/anatomy & histology , Kinetics , Liver/anatomy & histology , Male , Organ Size , Serum Albumin, Bovine/analysis , Urea/blood , Valine/administration & dosage , Valine/analysis
2.
Diabetes ; 50(4): 727-32, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11289035

ABSTRACT

Raising plasma free fatty acid (FFA) levels reduces muscle glucose uptake, but the effect of FFAs on splanchnic glucose uptake, total glucose output, and glucose cycling may also be critical to producing lipid-induced glucose intolerance. In eight normal volunteers, we measured glucose turnover and cycling rates ([2H7]glucose infusion) during a moderately hyperglycemic (7.7 mmol/l) hyperinsulinemic clamp, before and after ingestion of a labeled (dideuterated) oral glucose load (700 mg/kg). Each test was performed twice, with either a lipid or a saline infusion; four subjects also had a third test with a glycerol infusion. As shown by similar rates of exogenous glucose appearance, the lipid infusion did not reduce first-pass splanchnic glucose uptake (saline 1.48+/-0.18, lipid 1.69+/-0.17, and glycerol 1.88+/-0.17 mmol/kg per 180 min; NS), but it reduced peripheral glucose uptake by 40% (P < 0.01 vs. both saline and glycerol infusions). Before oral ingestion of glucose, total glucose output was similarly increased by the lipid and glycerol infusions. Total glucose output was significantly increased by FFAs after oral ingestion of glucose (saline 3.68+/-1.15, glycerol 3.68+/-1.70, and lipid 7.92+/-0.88 micromol x kg(-1) x min(-1); P < 0.01 vs. saline and P < 0.05 vs. glycerol). The glucose cycling rate was approximately 2.7 micromol x kg(-1) x min(-1) with the three infusions and tended to decrease all along the lipid infusion, which argues against a stimulation of glucose-6-phosphatase by FFAs. It is concluded that in situations of moderate hyperinsulinemia-hyperglycemia, FFAs reduce peripheral but not splanchnic glucose uptake. Total glucose output is increased by FFAs, by a mechanism that does not seem to involve stimulation of glucose-6-phosphatase.


Subject(s)
Fatty Acids, Nonesterified/blood , Glucose/pharmacokinetics , Muscle, Skeletal/metabolism , Viscera/metabolism , Adult , Fats/pharmacology , Fatty Acids, Nonesterified/pharmacology , Glycerol/pharmacology , Hormones/blood , Humans , Male , Reference Values , Tissue Distribution
3.
Int J Obes Relat Metab Disord ; 22(9): 923-6, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9756253

ABSTRACT

OBJECTIVES: To assess the effects of intracerebroventricular (i.c.v.) leptin administration on rats fed ad libitum or fasted on 3H GDP binding to brown adipose tissue (BAT). SUBJECTS: Groups of 5-6 ten-week-old male Wistar rats. EXPERIMENTAL DESIGN: An i.c.v. cannula was inserted and unilateral denervation of interscapular brown adipose tissue (BAT) was performed 5 d before each study. Thereafter, leptin was infused i.c.v. during 72 h while rats were fed ad libitum or fasted. Vehicle-infused, pair-fed or fasted rats were used as controls. MEASUREMENTS: 3H GDP binding to innervated and denervated BAT mitochondria. RESULTS: 3H GDP binding to innervated or denervated BAT of rats fed ab libitum compared to vehicle-infused, pair-fed rats was not increased by i.c.v. leptin. 3H GDP binding was lower in fasted than in fed rats, and the difference was larger in innervated than denervated BAT. I.c.v. leptin increased 3H GDP binding by 30% in innervated, and by 51% in denervated BAT (P < 0.05) in fasted rats. CONCLUSIONS: I.c.v. leptin does not increase 3H GDP binding to BAT of rats fed ad libitum compared to pair-fed (food-restricted) rats. In contrast, i.c.v. leptin produces a mild stimulation of 3H GDP binding to BAT of fasted rats. This effect is not mediated by the sympathetic nervous system, because it is observed in both innervated and denervated BAT. These results are compatible with the concept that, in fasting rats, the decrease in leptin secretion contributes to the reduction in 3H GDP binding to BAT mitochondria.


Subject(s)
Adipose Tissue, Brown/metabolism , Fasting , Food , Guanosine Diphosphate/metabolism , Proteins/pharmacology , Adipose Tissue, Brown/innervation , Animals , Brain/drug effects , Denervation , Insulin/blood , Leptin , Male , Mitochondria/metabolism , Proteins/administration & dosage , Rats , Rats, Wistar , Triiodothyronine/blood
4.
Int J Obes Relat Metab Disord ; 21(7): 562-6, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9226486

ABSTRACT

OBJECTIVES: Carbohydrate feeding stimulates, and fasting decreases the sympathetic nervous system activity and brown adipose tissue (BAT) thermogenesis. This study was performed to assess the hypothesis that these effects were secondary to changes in insulin concentrations in the central nervous system. METHODS: BAT sympathetic activity was assessed by comparing 3H-GDP binding to isolated mitochondria of innervated and denervated interscapular BAT of three groups of 10 week old male Wistar rats: food-restricted, 48 h fasted or ad libitum fed. During the three days preceding this measurement, animals received a continuous intracerebroventricular (ivc) infusion of insulin (0.48 U/d) or vehicle. RESULTS: In food-restricted rats, 3H-GDP binding to mitochondria of innervated BAT was 41% higher than that to denervated BAT. Icv insulin did not stimulate 3H-GDP binding in innervated BAT. In 48 h fasted rats, 3H-GDP binding to mitochondria of innervated BAT was reduced by 30-50%, while the activity of denervated BAT was minimally affected. Icv insulin did not prevent this fasting-induced drop in BAT. In rats fed ad libitum, icv insulin decreased food intake by 17% (P < 0.05) and increased 3H-GDP binding to innervated BAT by 27% (P < 0.05). CONCLUSION: Intracerebroventricular insulin stimulates BAT activity in rats fed ad libitum but not in food-restricted or fasted rats. This demonstrates that the decrease in BAT activity observed during fasting is unlikely to be due to a decrease in insulin concentration in the nervous system.


Subject(s)
Adipose Tissue, Brown/drug effects , Food Deprivation/physiology , Food , Insulin/pharmacology , Adipose Tissue, Brown/metabolism , Animals , Guanosine Diphosphate/metabolism , Infusion Pumps, Implantable , Insulin/administration & dosage , Insulin/blood , Male , Rats , Rats, Wistar , Sympathetic Nervous System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...