Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 90(3): 436-446, 2018 03.
Article in English | MEDLINE | ID: mdl-29053189

ABSTRACT

Host response to influenza is highly variable, suggesting a potential role of host genetic variation. To investigate the host genetics of severe influenza in a targeted fashion, 32 single nucleotide polymorphisms (SNPs) within viral immune response genes were evaluated for association with seasonal influenza hospitalization in an adult study population with European ancestry. SNP allele and genotype frequencies were compared between hospitalized influenza patients (cases) and population controls in a case-control study that included a discovery group (26 cases and 993 controls) and two independent, validation groups (1 with 84 cases and 4076 controls; the other with 128 cases and 9187 controls). Cases and controls had similar allele frequencies for variant rs12252 in interferon-inducible transmembrane protein 3 (IFITM3) (P > 0.05), and the study did not replicate the previously reported association of rs12252 with hospitalized influenza. In the discovery group, the preliminary finding of an association with a nonsense polymorphism (rs8072510) within the schlafen family member 13 (SFLN13) gene (P = 0.0099) was not confirmed in either validation group. Neither rs12252 nor rs8072510 showed an association according to the presence of clinical risk factors for influenza complications (P > 0.05), suggesting that these factors did not modify associations between the SNPs and hospitalized influenza. No other SNPs showed a statistically significant association with hospitalized influenza. Further research is needed to identify genetic factors involved in host response to seasonal influenza infection and to assess whether rs12252, a low-frequency variant in Europeans, contributes to influenza severity in populations with European ancestry.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Hospitalization/statistics & numerical data , Influenza, Human/genetics , Adult , Aged , Case-Control Studies , Electronic Health Records , Female , Gene Frequency , Genetic Variation , Genotype , Humans , Influenza A Virus, H1N1 Subtype , Male , Membrane Proteins/genetics , Middle Aged , Pilot Projects , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics
2.
BMC Genet ; 11: 51, 2010 Jun 17.
Article in English | MEDLINE | ID: mdl-20565774

ABSTRACT

BACKGROUND: There is a lack of knowledge regarding the frequency of disease associated polymorphisms in populations and population attributable risk for many populations remains unknown. Factors that could affect the association of the allele with disease, either positively or negatively, such as race, ethnicity, and gender, may not be possible to determine without population based allele frequencies.Here we used a panel of 51 polymorphisms previously associated with at least one disease and determined the allele frequencies within the entire Personalized Medicine Research Project population based cohort. We compared these allele frequencies to those in dbSNP and other data sources stratified by race. Differences in allele frequencies between self reported race, region of origin, and sex were determined. RESULTS: There were 19544 individuals who self reported a single racial category, 19027 or (97.4%) self reported white Caucasian, and 11205 (57.3%) individuals were female. Of the 11,208 (57%) individuals with an identifiable region of origin 8337 or (74.4%) were German.41 polymorphisms were significantly different between self reported race at the 0.05 level. Stratification of our Caucasian population by self reported region of origin revealed 19 polymorphisms that were significantly different (p = 0.05) between individuals of different origins. Further stratification of the population by gender revealed few significant differences in allele frequencies between the genders. CONCLUSIONS: This represents one of the largest population based allele frequency studies to date. Stratification by self reported race and region of origin revealed wide differences in allele frequencies not only by race but also by region of origin within a single racial group. We report allele frequencies for our Asian/Hmong and American Indian populations; these two minority groups are not typically selected for population allele frequency detection. Population wide allele frequencies are important for the design and implementation of studies and for determining the relevance of a disease associated polymorphism for a given population.


Subject(s)
Gene Frequency , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic , Population Groups/genetics , Ethnicity/genetics , Humans , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...