Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mot Behav ; 56(3): 253-262, 2024.
Article in English | MEDLINE | ID: mdl-37994869

ABSTRACT

Treadmills are important rehabilitation tools used with or without handrails. The handrails could be used to attain balance, prevent falls, and improve the walking biomechanics of stroke survivors, but it is yet unclear how the treadmill handrails impact their stability margins. Here, we investigated how 3 treadmill handrail-use conditions (no-hold, self-selected support, and light touch) impact stroke survivors' margins of stability (MoS). The anteroposterior MoS significantly increased for both legs with self-selected support while the mediolateral MoS of the unaffected leg decreased significantly when the participants walked with self-selected support in comparison to no-hold in both cases. We concluded that the contextual use of the handrail should guide its prescription for fall prevention or balance training in rehabilitation programs.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Postural Balance , Walking , Biomechanical Phenomena , Gait
2.
Res Sq ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798184

ABSTRACT

Background: Three-dimensional (3D) motion analysis is an advanced tool used to quantify movement patterns in adults with chronic stroke and children with cerebral palsy. However, gold-standard marker-based systems have limitations for implementation in clinical settings. Markerless motion capture using Theia3D may provide a more accessible and clinically feasible alternative, but its accuracy is unknown in clinical populations. The purpose of this study was to quantify kinematic differences between marker-based and markerless motion capture systems in individuals with gait impairments. Methods: Three adults with chronic stroke and three children with cerebral palsy completed overground walking trials while marker-based and markerless motion capture data were synchronously recorded. Time-series waveforms of 3D ankle, knee, hip, and trunk angles were stride normalized and compared. Root mean squared error, maximum peak, minimum peak, and range of motion were used to assess discrete point differences. Pearson's correlation and coefficient of multiple correlation were computed to assess similarity between the time series joint angle waveforms from both systems. Results: This study demonstrates that markerless motion capture using Theia3D produces good agreement with marker-based in the measurement of gait kinematics at most joints and anatomical planes in individuals with chronic stroke and cerebral palsy. Conclusions: This is the first investigation to study the feasibility of Theia3D markerless motion capture for use in chronic stroke and cerebral palsy gait analysis. Our results indicate that markerless motion capture may be an acceptable tool to measure gait kinematics in clinical populations to provide clinicians with objective movement assessment data.

SELECTION OF CITATIONS
SEARCH DETAIL
...