Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Fish Biol ; 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37483116

ABSTRACT

The Atlantic bluefin tuna (ABFT) is a highly prized species of large pelagic fish. Studies of their environmental physiology may improve understanding and management of their populations, but this is difficult for mature adults because of their large size. Biologging of heart rate holds promise in investigating physiological responses to environmental conditions in free-swimming fishes but it is very challenging to anesthetize large ABFT for invasive surgery to place a tag in the body cavity near to the heart. We describe a novel method for rapid deployment of a commercially available heart-rate tag on ABFT, using an atraumatic trocar to implant it in the musculature associated with the cleithrum. We performed three sequential experiments to show that the tagging method (1) is consistently repeatable and reliable, (2) can be used successfully on commercial fishing boats and does not seem to affect fish survival, and (3) is effective for long-term deployments. In experiment 3, a tag logged heart rate over 80 days on a 60-kg ABFT held in a farm cage. The logged data showed that heart rate was sensitive to prevailing seasonal temperature and feeding events. At low temperatures, there were clear responses to feeding but these all disappeared above a threshold temperature of 25.5°C. Overall, the results show that our method is simple, rapid, and repeatable, and can be used for long-term experiments to investigate physiological responses by large ABFT to environmental conditions.

2.
Sci Rep ; 11(1): 21272, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711864

ABSTRACT

How ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species' latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


Subject(s)
Acclimatization , Fishes , Temperature , Tropical Climate , Animals , Biodiversity , Biological Evolution , Ecosystem , Fishes/classification , Fishes/genetics , Phylogeny , Species Specificity
3.
J Exp Biol ; 223(Pt 19)2020 10 07.
Article in English | MEDLINE | ID: mdl-32796039

ABSTRACT

Billfishes are well known for their distinctive elongated rostra, i.e. bills. The functional significance of billfish rostra has been frequently discussed and the recent discovery of an oil gland (glandula oleofera) at the base of the rostrum in swordfish, Xiphias gladius, has added an interesting facet to this discussion regarding the potential co-evolution of gland and rostra. Here, we investigated the oil gland and oil pores (through which the oil is brought to the skin surface) of four billfish species - swordfish, Atlantic blue marlin (Makaira nigricans), Indo-Pacific sailfish (Istiophorus platypterus) and striped marlin (Kajikia audax) - and provide detailed evidence for the presence of an oil gland in the last three. All four species had a high density of oil pores on the forehead which is consistent with the hypothesis of hydrodynamic benefits of the oil. The extension of the pores onto the front half of the rostrum in sailfish and striped marlin, but not in swordfish or blue marlin, suggests that the oil may have additional functions. One such function could be linked to the antibacterial and anti-inflammatory properties of the oil. However, the available evidence on predatory rostrum use (and hence the likelihood of tissue damage) is only partly consistent with the extension of pores on rostra across species. We conclude that the oil gland probably serves multiple, non-mutually exclusive functions. More detailed information on rostrum use in blue marlin and swordfish is needed to better link behavioural and morphological data with the aim of accomplishing a full comparative analysis.


Subject(s)
Perciformes , Animals , Fishes , Hydrodynamics , Predatory Behavior
4.
Proc Biol Sci ; 287(1918): 20192228, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31937224

ABSTRACT

Linking morphological differences in foraging adaptations to prey choice and feeding strategies has provided major evolutionary insights across taxa. Here, we combine behavioural and morphological approaches to explore and compare the role of the rostrum (bill) and micro-teeth in the feeding behaviour of sailfish (Istiophorus platypterus) and striped marlin (Kajikia audax) when attacking schooling sardine prey. Behavioural results from high-speed videos showed that sailfish and striped marlin both regularly made rostrum contact with prey but displayed distinct strategies. Marlin used high-speed dashes, breaking schools apart, often contacting prey incidentally or tapping at isolated prey with their rostra; while sailfish used their rostra more frequently and tended to use a slower, less disruptive approach with more horizontal rostral slashes on cohesive prey schools. Capture success per attack was similar between species, but striped marlin had higher capture rates per minute. The rostra of both species are covered with micro-teeth, and micro-CT imaging showed that species did not differ in average micro-tooth length, but sailfish had a higher density of micro-teeth on the dorsal and ventral sides of their rostra and a higher amount of micro-teeth regrowth, suggesting a greater amount of rostrum use is associated with more investment in micro-teeth. Our analysis shows that the rostra of billfish are used in distinct ways and we discuss our results in the broader context of relationships between morphological and behavioural feeding adaptations across species.


Subject(s)
Perciformes/anatomy & histology , Predatory Behavior , Animals , Biological Evolution , Feeding Behavior , Perciformes/physiology
5.
Philos Trans R Soc Lond B Biol Sci ; 372(1727)2017 Aug 19.
Article in English | MEDLINE | ID: mdl-28673910

ABSTRACT

The costs and benefits of group living often depend on the spatial position of individuals within groups and the ability of individuals to occupy preferred positions. For example, models of predation events for moving prey groups predict higher mortality risk for individuals at the periphery and front of groups. We investigated these predictions in sardine (Sardinella aurita) schools under attack from group hunting sailfish (Istiophorus platypterus) in the open ocean. Sailfish approached sardine schools about equally often from the front and rear, but prior to attack there was a chasing period in which sardines attempted to swim away from the predator. Consequently, all sailfish attacks were directed at the rear and peripheral positions of the school, resulting in higher predation risk for individuals at these positions. During attacks, sailfish slash at sardines with their bill causing prey injury including scale removal and tissue damage. Sardines injured in previous attacks were more often found in the rear half of the school than in the front half. Moreover, injured fish had lower tail-beat frequencies and lagged behind uninjured fish. Injuries inflicted by sailfish bills may, therefore, hinder prey swimming speed and drive spatial sorting in prey schools through passive self-assortment. We found only partial support for the theoretical predictions from current predator-prey models, highlighting the importance of incorporating more realistic predator-prey dynamics into these models.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.


Subject(s)
Fishes/physiology , Food Chain , Predatory Behavior , Swimming , Animals , Fishes/injuries , Gulf of Mexico , Perciformes/physiology , Risk , Social Behavior
6.
J Fish Biol ; 90(6): 2434-2442, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28370093

ABSTRACT

The effect of the presence and angular position of a refuge on the direction and kinematics of mechanically-induced escape responses was observed in staghorn sculpins Leptocottus armatus using high-speed video. The results showed that the angular position of the refuge did not affect locomotor performance (speed and acceleration), although it did affect the escape trajectories. Therefore, the angular position of a refuge can modulate the direction taken by the L. armatus during the early stages of their escape response and this response can be affected by both repulsive (i.e. threats) and attractive (i.e. refuges) points of reference.


Subject(s)
Environment , Escape Reaction , Perciformes/physiology , Acceleration , Animals , Biomechanical Phenomena
7.
J Fish Biol ; 90(3): 819-833, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27981561

ABSTRACT

The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper-osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.


Subject(s)
Osmoregulation/physiology , Oxygen Consumption , Perches/blood , Salinity , Temperature , Animals , Ecosystem , Environment , Fresh Water , Gills/physiology , Osmolar Concentration , Osmosis , Water-Electrolyte Balance/physiology
8.
J Fish Biol ; 88(1): 51-64, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26768971

ABSTRACT

As intermittent-flow respirometry has become a common method for the determination of resting metabolism or standard metabolic rate (SMR), this study investigated how much of the variability seen in the experiments was due to measurement error. Experiments simulated different constant oxygen consumption rates (M˙O2 ) of a fish, by continuously injecting anoxic water into a respirometer, altering the injection rate to correct for the washout error. The effect of respirometer-to-fish volume ratio (RFR) on SMR measurement and variability was also investigated, using the simulated constant M˙O2 and the M˙O2 of seven roach Rutilus rutilus in respirometers of two different sizes. The results show that higher RFR increases measurement variability but does not change the mean SMR established using a double Gaussian fit. Further, the study demonstrates that the variation observed when determining oxygen consumption rates of fishes in systems with reasonable RFRs mainly comes from the animal, not from the measuring equipment.


Subject(s)
Cyprinidae/physiology , Energy Metabolism , Oxygen Consumption , Animals , Basal Metabolism , Oxygen/metabolism
9.
J Fish Biol ; 88(1): 81-121, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26768973

ABSTRACT

This review and data analysis outline how fish biologists should most reliably estimate the minimal amount of oxygen needed by a fish to support its aerobic metabolic rate (termed standard metabolic rate; SMR). By reviewing key literature, it explains the theory, terminology and challenges underlying SMR measurements in fishes, which are almost always made using respirometry (which measures oxygen uptake, MO2 ). Then, the practical difficulties of measuring SMR when activity of the fish is not quantitatively evaluated are comprehensively explored using 85 examples of MO2 data from different fishes and one crustacean, an analysis that goes well beyond any previous attempt. The main objective was to compare eight methods to estimate SMR. The methods were: average of the lowest 10 values (low10) and average of the 10% lowest MO2 values, after removing the five lowest ones as outliers (low10%), mean of the lowest normal distribution (MLND) and quantiles that assign from 10 to 30% of the data below SMR (q0·1 , q0·15 , q0·2 , q0·25 and q0·3 ). The eight methods yielded significantly different SMR estimates, as expected. While the differences were small when the variability was low amongst the MO2 values, they were important (>20%) for several cases. The degree of agreement between the methods was related to the c.v. of the observations that were classified into the lowest normal distribution, the c.v. MLND (C.V.MLND ). When this indicator was low (≤5·4), it was advantageous to use the MLND, otherwise, one of the q0·2 or q0·25 should be used. The second objective was to assess if the data recorded during the initial recovery period in the respirometer should be included or excluded, and the recommendation is to exclude them. The final objective was to determine the minimal duration of experiments aiming to estimate SMR. The results show that 12 h is insufficient but 24 h is adequate. A list of basic recommendations for practitioners who use respirometry to measure SMR in fishes is provided.


Subject(s)
Energy Metabolism , Fishes/metabolism , Oxygen Consumption , Animals , Basal Metabolism , Oxygen/metabolism
10.
J Fish Biol ; 88(1): 252-64, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26768977

ABSTRACT

This study compares the critical oxygen saturation (O2 crit ) levels of the shiner perch Cymatogaster aggregata obtained using two different methods wherein hypoxia is induced either by the fish's respiration (closed respirometry) or by degassing oxygen with nitrogen (intermittent-flow respirometry). Fish exhibited loss of equilibrium at a higher O2 saturation in the closed respirometry method when compared with the intermittent-flow method. Utilization of closed respirometry yielded O2 crit measurements that were almost twice as high as those obtained with intermittent-flow respirometry. The lower hypoxia tolerance in closed respirometry is consistent with additional stress, caused by a build-up of ammonia and carbon dioxide and a faster rate in dissolved oxygen decline. The results indicate that these two methods of determining hypoxia tolerance in aquatic organisms are not comparable, and that much care should be given to method choice.


Subject(s)
Hypoxia , Oxygen Consumption , Perches/physiology , Ammonia/metabolism , Animals , Carbon Dioxide/metabolism , Oxygen/physiology
11.
J Fish Biol ; 88(1): 26-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26603018

ABSTRACT

Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short periods of closed-chamber oxygen consumption measurements with regular flush periods, accurate oxygen uptake rate measurements can be made without the accumulation of waste products, particularly carbon dioxide, which may confound results. Automating the procedure with easily available hardware and software further reduces error by allowing many measurements to be made over long periods thereby minimizing animal stress due to acclimation issues. This paper describes some of the fundamental principles that need to be considered when designing and carrying out automated intermittent-flow respirometry (e.g. chamber size, flush rate, flush time, chamber mixing, measurement periods and temperature control). Finally, recent advances in oxygen probe technology and open source automation software will be discussed in the context of assembling relatively low cost and reliable measurement systems.


Subject(s)
Fishes/physiology , Oxygen Consumption , Animals , Carbon Dioxide/metabolism , Oxygen/metabolism , Temperature
12.
Proc Biol Sci ; 281(1784): 20140444, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24759865

ABSTRACT

The istiophorid family of billfishes is characterized by an extended rostrum or 'bill'. While various functions (e.g. foraging and hydrodynamic benefits) have been proposed for this structure, until now no study has directly investigated the mechanisms by which billfishes use their rostrum to feed on prey. Here, we present the first unequivocal evidence of how the bill is used by Atlantic sailfish (Istiophorus albicans) to attack schooling sardines in the open ocean. Using high-speed video-analysis, we show that (i) sailfish manage to insert their bill into sardine schools without eliciting an evasive response and (ii) subsequently use their bill to either tap on individual prey targets or to slash through the school with powerful lateral motions characterized by one of the highest accelerations ever recorded in an aquatic vertebrate. Our results demonstrate that the combination of stealth and rapid motion make the sailfish bill an extremely effective feeding adaptation for capturing schooling prey.


Subject(s)
Perciformes/physiology , Predatory Behavior , Acceleration , Adaptation, Biological , Animals , Perciformes/anatomy & histology , Videotape Recording
13.
J Exp Biol ; 217(Pt 3): 414-22, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24115060

ABSTRACT

Unsteady water flows are common in nature, yet the swimming performance of fishes is typically evaluated at constant, steady speeds in the laboratory. We examined how cyclic changes in water flow velocity affect the swimming performance and energetics of a labriform swimmer, the shiner surfperch, Cymatogaster aggregata, during station holding. Using intermittent-flow respirometry, we measured critical swimming speed (Ucrit), oxygen consumption rates (O2) and pectoral fin use in steady flow versus unsteady flows with either low- [0.5 body lengths (BL) s(-1)] or high-amplitude (1.0 BL s(-1)) velocity fluctuations, with a 5 s period. Individuals in low-amplitude unsteady flow performed as well as fish in steady flow. However, swimming costs in high-amplitude unsteady flow were on average 25.3% higher than in steady flow and 14.2% higher than estimated values obtained from simulations based on the non-linear relationship between swimming speed and oxygen consumption rate in steady flow. Time-averaged pectoral fin use (fin-beat frequency measured over 300 s) was similar among treatments. However, measures of instantaneous fin use (fin-beat period) and body movement in high-amplitude unsteady flow indicate that individuals with greater variation in the duration of their fin beats were better at holding station and consumed less oxygen than fish with low variation in fin-beat period. These results suggest that the costs of swimming in unsteady flows are context dependent in labriform swimmers, and may be influenced by individual differences in the ability of fishes to adjust their fin beats to the flow environment.


Subject(s)
Oxygen/metabolism , Perciformes/physiology , Swimming , Animal Fins/physiology , Animals , Biomechanical Phenomena , Oxygen Consumption
14.
J Exp Biol ; 217(Pt 5): 751-7, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24198251

ABSTRACT

Teleost fishes and mammalian lineages diverged 400 million years ago, and environmental requirements (water versus air) have resulted in marked differences in cardiovascular function between fish and mammals. Suggestions that the fish secondary vascular system (SVS) could be used as a model for the mammalian lymphatic system should be taken with caution. Despite molecular markers indicating similar genetic origin, functions of the SVS in teleost fish are probably different from those of the mammalian lymphatic system. We determined that, in resting glass catfish (Kryptopterus bicirrhis), plasma moves from the primary vascular system (PVS) to the SVS through small connecting vessels less than 10 µm in diameter, smaller than the red blood cells (RBCs). During and following hypoxia or exercise, flow increases and RBCs enter the SVS, possibly via ß-adrenoreceptor-mediated dilation of the connecting vessels. The volume of the SVS can be large and, as RBCs flow into the SVS, the haematocrit of the PVS falls by as much as 50% of the resting value. Possible functions of the SVS, including skin respiration, ionic and osmotic buffering, and reductions in heart work and RBC turnover, are discussed.


Subject(s)
Catfishes/physiology , Lymphatic System/physiology , Physical Conditioning, Animal , Adrenergic Antagonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Anaerobiosis , Animals , Fluorescence , Hematocrit , Lymphatic System/drug effects , Microscopy, Video , Microspheres
15.
J Fish Biol ; 83(2): 396-403, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23902313

ABSTRACT

Atlantic cod Gadus morhua experienced oxygen deficit ( D O 2 ) when exposed to oxygen levels below their critical level (c. 73% of pcrit ) and subsequent excess post-hypoxic oxygen consumption (CEPHO ) upon return to normoxic conditions, indicative of an oxygen debt. The mean ± s.e. CEPHO : D O 2 was 6·9 ± 1·5, suggesting that resorting to anaerobic energy production in severe hypoxia is energetically expensive.


Subject(s)
Energy Metabolism/physiology , Gadus morhua/metabolism , Oxygen Consumption , Animals , Cell Hypoxia , Gadus morhua/physiology
16.
Article in English | MEDLINE | ID: mdl-23396307

ABSTRACT

Carassius carassius responds to hypoxic conditions by conversion of lactate into ethanol, which is excreted over the gills. However, a closely related species, Cyprinus carpio, does not possess the ability to produce ethanol and would be expected to accumulate lactate during hypoxic exposure. While the increase in oxygen consumption in fish required following strenuous exercise or low environmental oxygen availability has been frequently considered, the primary contributing mechanism remains unknown. This study utilized the close relationship but strongly divergent physiology between C. carpio and C. carassius to examine the possible correlation between excess post-hypoxic oxygen consumption (EPHOC) and lactate accumulation. No difference in the EPHOC:O2 deficit ratio was observed between the two species after 2.5h anoxia, with ratios of 2.0±0.6 (C. carpio) and 1.3±0.3 (C. carassius). As predicted, lactate accumulation dynamics did significantly differ between the species in both plasma and white muscle following anoxic exposure. Significant lactate accumulation was seen in both plasma and muscle in C. carpio, but there was no accumulation of lactate in white muscle tissue of C. carassius. These findings indicate that lactate accumulated as a consequence of 2.5h anoxic exposure is not a major determinant of the resulting EPHOC.


Subject(s)
Carps , Lactic Acid/metabolism , Oxygen Consumption , Animals , Carps/metabolism , Carps/physiology , Ethanol/metabolism , Gills/metabolism , Hypoxia/metabolism , Hypoxia/physiopathology , Muscles/metabolism , Oxygen/metabolism
18.
Article in English | MEDLINE | ID: mdl-22587961

ABSTRACT

The present study was undertaken to examine cardiac responses to some of the temperature challenges that eels encounter in their natural environment. The contractile properties of ventricular muscle was studied on electrically paced tissue strips after long term acclimation at 0 °C, 10 °C, or 20 °C, and following acute ± 10 °C temperature changes. The time-course of contraction, and thus maximal attainable heart rates, was greatly influenced by working temperature, but was independent of acclimation history. The absolute force of contraction and power production (i.e. the product of force and stimulation frequency) was significantly influenced by acute temperature decrease from 20 °C to 10 °C. The role of adrenaline as a modulator of contraction force, power production, rates of contraction and relaxation, and minimum time in contraction was assessed. Increased adrenergic tonus elicited a positive inotropic, temperature-dependent response, but did not influence twitch duration. This suggests that adrenaline acts as an agent in maintaining an adequate contractile force following temperature challenges. A significant increased relative ventricular mass was observed in 0 °C and 10 °C-acclimated eels compared to 20 °C-acclimated, which suggests that at low temperatures, eels secure cardiac output by heart enlargement. Inhibition of specific sarcolemmal Ca(2+) channels by selective drug treatment revealed that, depending on temperature, L-type channels is the major entry site, but also that reverse-mode Na(+)/Ca(2+)-exchange and store operated calcium entry contribute to the pool of activator Ca(2+).


Subject(s)
Anguilla/physiology , Animal Migration , Myocardial Contraction , Myocytes, Cardiac/physiology , Seasons , Temperature , Animals , Calcium/metabolism , Sodium-Calcium Exchanger/metabolism
19.
Horm Behav ; 60(5): 699-705, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21983227

ABSTRACT

Maternal size, age, and allostatic load influence offspring size, development, and survival. Some of these effects have been attributed to the release of glucocorticoids, and individual variation in these stress hormones is related to a number of traits. Correlated traits are often clustered and used to define the proactive and reactive stress coping styles. Although stress coping styles have been identified in a number of animal groups, little is known about the coupling between stress coping style and offspring characteristics. In the present study, plasma cortisol levels in ovulated mothers and cortisol levels in non-fertilized eggs from two rainbow trout (Oncorhynchus mykiss) strains selected for high (HR) and low (LR) post-stress plasma cortisol levels were compared. Offspring characteristics such as egg size, larval growth, and energy reserves also were compared between the two strains. Maternal plasma and egg cortisol levels were correlated, but no difference between the HR and LR strains was detected in either parameter. LR females produced larger eggs, and larvae with larger yolk sacs compared to HR females, however no differences in larval body size (excluding the yolk) was detected between strains. Considering that the HR and LR strains have a number of correlated behavioral and physiological traits that resemble the reactive and proactive stress coping styles, respectively, the results suggest that proactive mothers invest more energy into their offspring, producing larvae with larger energy reserves. It is possible that larger energy reserves in proactive larvae support the energy requirement for establishing and defending territory in salmonid fish. Furthermore, in the present study we found a positive relationship between mother plasma cortisol and egg cortisol; however neither mother plasma cortisol nor egg cortisol differed between strains. These results indicate that cortisol endowment from the mother to the offspring plays a minor role in the transfer of the behavioral and physiological traits which separates these strains.


Subject(s)
Adaptation, Psychological , Hydrocortisone/blood , Maternal Behavior/psychology , Oncorhynchus mykiss/physiology , Stress, Psychological/blood , Animals , Behavior, Animal , Female , Male , Oncorhynchus mykiss/blood , Ovum/chemistry
20.
J Fish Biol ; 77(3): 538-51, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20701639

ABSTRACT

The influence of prolonged moderate (c. 60% oxygen saturation) and severe hypoxia (c. 35% oxygen saturation) on the diurnal activity pattern of sandeel Ammodytes tobianus was examined. In moderate hypoxia, the emerging and burying rates were significantly higher compared to that in normoxia, whereas fewer fish (c. 10%) were present in the water column. In contrast, severe hypoxia resulted in twice as many or more fish being present in the water column compared to that in normoxia. The increased number of swimming fish was not just a relative change due to an effect from hypoxia treatment, but the behaviour of the fish was also changed. The summed activity (emerging plus burying events) was lower in severe hypoxia compared to normoxia except during hours of dim light. All fish were buried during night-time, regardless of treatment, with the exception of some in severe hypoxia during the first couple of hours of darkness.


Subject(s)
Behavior, Animal/physiology , Circadian Rhythm/physiology , Perciformes/physiology , Anaerobiosis , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...