Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37998007

ABSTRACT

To ensure optimal feed intake, growth, and general fish health in aquaculture sea cages, interactions between drivers that affect oxygen conditions need to be understood. The main drivers are oxygen consumption and water exchange, caused by flow through the cage. Swimming energetics in rainbow trout (Oncorhynchus mykiss) in normoxia and hypoxia at 10, 15, and 20 °C were determined. Using the determinations, a conceptual model of oxygen conditions within sea cages was created. By applying the model to a case study, results show that with a temperature increase of 10 °C, oxygen concentration will decrease three times faster. To maintain optimal oxygen concentration within the cage, the flow velocity must be increased by a factor of 3.7. The model is highly relevant for current farms since the model predictions can explain why and when suboptimal conditions occur within the cages. Using the same method, the model can be used to estimate the suitability of potential new aquaculture sites.

2.
J Fish Biol ; 103(3): 675-683, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37170416

ABSTRACT

Global warming affects the metabolism of ectothermic aquatic breathers forcing them to migrate and undergo high-latitudinal distribution shifts to circumvent the temperature-induced mismatch between increased metabolic demand and reduced water oxygen availability. Here the authors examined the effects of temperature on oxygen consumption rates in an Arctic stenotherm, the Greenland halibut Reinhardtius hippoglossoides, and calculated the optimal temperature for maximum aerobic scope, AS(Topt,AS ), which was found to be 2.44°C. They also investigated cardiac performance as limiting the oxygen transport chain at high temperatures by measuring maximum heart rate (fHmax ) over acute temperature increases and found various metrics related to fHmax to be at least 3.2°C higher than Topt,AS . The authors' measured Topt,AS closely reflected in situ temperature occurrences of Greenland halibut from long-term tagging studies, showing that AS of the species is adapted to its habitat temperature, and is thus a good proxy for the species' sensitivity to environmental warming. The authors did not find a close connection between fHmax and Topt,AS , suggesting that cardiac performance is not limiting for the oxygen transport chain at high temperatures in this particular Arctic stenotherm. The authors' estimate of the thermal envelope for AS of Greenland halibut was from -1.89 to 8.07°C, which is exceptionally narrow compared to most other species of fish. As ocean temperatures increase most rapidly in the Arctic in response to climate change, and species in these areas have limited possibility for further poleward-range shifts, these results suggest potential severe effects of global warming on Arctic stenotherms, such as the Greenland halibut. The considerable economic importance of the species raises concerns for future fisheries and species conservation of Arctic stenotherms in the Northern Hemisphere.


Subject(s)
Flounder , Global Warming , Animals , Temperature , Greenland , Climate Change , Arctic Regions
3.
Biochimie ; 206: 136-149, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36334646

ABSTRACT

Nei Like DNA Glycosylase 1 (NEIL1) is a DNA glycosylase, which specifically processes oxidative DNA damage by initiating base excision repair. NEIL1 recognizes and removes bases, primarily oxidized pyrimidines, which have been damaged by endogenous oxidation or exogenous mutagenic agents. NEIL1 functions through a combined glycosylase/AP (apurinic/apyrimidinic)-lyase activity, whereby it cleaves the N-glycosylic bond between the DNA backbone and the damaged base via its glycosylase activity and hydrolysis of the DNA backbone through beta-delta elimination due to its AP-lyase activity. In our study we investigated our hypothesis proposing that the cancer resistance of the bowhead whale can be associated with a better DNA repair with NEIL1 being upregulated or more active. Here, we report the molecular cloning and characterization of three transcript variants of bowhead whale NEIL1 of which two were homologous to human transcripts. In addition, a novel NEIL1 transcript variant was found. A differential expression of NEIL mRNA was detected in bowhead eye, liver, kidney, and muscle. The A-to-I editing of NEIL1 mRNA was shown to be conserved in the bowhead and two adenosines in the 242Lys codon were subjected to editing. A mass spectroscopy analysis of liver and eye tissue failed to demonstrate the existence of a NEIL1 isoform originating from RNA editing. Recombinant bowhead and human NEIL1 were expressed in E. coli and assayed for enzymatic activity. Both bowhead and human recombinant NEIL1 catalyzed, with similar efficiency, the removal of a 5-hydroxyuracil lesion in a DNA bubble structure. Hence, these results do not support our hypothesis but do not refute the hypothesis either.


Subject(s)
Bowhead Whale , DNA Glycosylases , Escherichia coli Proteins , Lyases , Animals , Humans , Bowhead Whale/genetics , Bowhead Whale/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , DNA Repair , DNA Glycosylases/genetics , DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , Cloning, Molecular , DNA , RNA, Messenger , Lyases/metabolism , Escherichia coli Proteins/genetics , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Deoxyribonuclease (Pyrimidine Dimer)/metabolism
4.
Biomimetics (Basel) ; 4(2)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137624

ABSTRACT

Shark skin has for many years inspired engineers to produce biomimetic structures reducing surface drag or acting as an anti-fouling layer. Both effects are presumed to be consequences of the structure of shark skin that is composed of arrays of so-called dermal denticles. However, the understanding of the full functional role of the dermal denticles is still a topic of research. We report optical microscopy and scanning electron microscopy of dermal denticles from three slowly swimming shark species for which the functional role of the dermal denticles is suggested as one of defense (possibly understood as anti-fouling) and/or abrasion strength. The three species are Greenland shark (Somnosius microcephalus), small-spotted catshark (Scyliorhinus canicula) and spiny dogfish (Squalus acanthias). Samples were taken at over 30 different positions on the bodies of the sharks. In addition, we demonstrate that the flow pattern near natural shark skin can be measured by micro-PIV (particle image velocimetry). The microfluidic experiments are complemented by numerical flow simulations. Both visualize unsteady flow, small eddies, and recirculation bubbles behind the natural dermal denticles.

5.
Fish Physiol Biochem ; 41(1): 41-50, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25343877

ABSTRACT

Growth requires that energy is directed towards ingestion, digestion, absorption and assimilation of a meal; energy expenditures are often expressed as the specific dynamic action (SDA). While SDA is an important part of fish energy budgets and strongly affected by water temperature, temperature effects are not known across a wide temperature range in Atlantic cod Gadus morhua. The objective of this study was to examine effects of temperature (2, 5, 10, 15 or 20 °C) on the energetic cost and time used for SDA in juvenile G. morhua by intermittent flow respirometry. At each temperature, G. morhua were fed a meal of herring (Clupea harengus) corresponding to 5 % of the body mass. Standard metabolic rates measured pre-feeding and post-feeding metabolic rates were measured to determine SDA. The study showed that SDA coefficients (%, SDA energy divided by meal energy) were significantly lower at 2 and 10 °C (5.4-6.3 %) compared to 5, 15 and 20 °C (10.4-12.4 %), while SDA duration increased significantly from 80 h at 10 °C to 130-160 h at 2, 15 and 20 °C and reached a maximum of 250 h at 5 °C. The significant decrease in SDA duration at 10 °C combined with a low SDA coefficient suggests that water temperatures close to 10 °C may represent the optimum temperatures for SDA in this population of G. morhua. Our results suggest that SDA is not a simple function of temperature, but may vary with temperature in a more complex fashion.


Subject(s)
Energy Metabolism/physiology , Gadus morhua/growth & development , Temperature , Analysis of Variance , Animals , Denmark , Oxygen Consumption/physiology , Species Specificity , Time Factors
6.
J Exp Biol ; 216(Pt 7): 1255-64, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23197088

ABSTRACT

Monitoring and measuring the behaviour and movement of aquatic animals in the wild is typically challenging, though micro-accelerometer (archival or telemetry) tags now provide the means to remotely identify and quantify behavioural states and rates such as resting, swimming and migrating, and to estimate activity and energy budgets. Most studies use low-frequency (≤32 Hz) accelerometer sampling because of battery and data-archiving constraints. In this study we assessed the effect of sampling frequency (aliasing) on activity detection probability using the great sculpin (Myoxocephalus polyacanthoceaphalus) as a model species. Feeding strikes and escape responses (fast-start activities) and spontaneous movements among seven different great sculpin were triggered, observed and recorded using video records and a tri-axial accelerometer sampling at 100 Hz. We demonstrate that multiple parameters in the time and probability domains can statistically differentiate between activities with high detection (90%) and identification (80%) probabilities. Detection probability for feeding and escape activities decreased by 50% when sampling at <10 Hz. Our analyses illustrate additional problems associated with aliasing and how activity and energy-budget estimates can be compromised and misinterpreted. We recommend that high-frequency (>30 Hz) accelerometer sampling be used in similar laboratory and field studies. If battery and/or data storage is limited, we also recommend archiving the events via an on-board algorithm that determines the highest likelihood and subsequent archiving of the various event classes of interest.


Subject(s)
Acceleration , Accelerometry/instrumentation , Behavior, Animal/physiology , Fishes/physiology , Motor Activity/physiology , Accelerometry/methods , Animals , Escape Reaction/physiology , Predatory Behavior/physiology , Telemetry , Video Recording
7.
Nat Protoc ; 5(12): 1911-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21127485

ABSTRACT

Hypoxia facilitates tumor invasion and metastasis by promoting neovascularization and co-option of tumor cells in the peritumoral vasculature, leading to dissemination of tumor cells into the circulation. However, until recently, animal models and imaging technology did not enable monitoring of the early events of tumor cell invasion and dissemination in living animals. We recently developed a zebrafish metastasis model to dissect the detailed events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent DiI-labeled human or mouse tumor cells are implanted into the perivitelline cavity of 48-h-old zebrafish embryos, which are subsequently placed in hypoxic water for 3 d. Tumor cell invasion, metastasis and pathological angiogenesis are detected under fluorescent microscopy in the living fish. The average experimental time for this model is 7 d. Our protocol offers a remarkable opportunity to study molecular mechanisms of hypoxia-induced cancer metastasis.


Subject(s)
Disease Models, Animal , Hypoxia/complications , Neoplasm Metastasis/pathology , Neovascularization, Pathologic/pathology , Zebrafish/embryology , Animals , Cell Line, Tumor , Embryo, Nonmammalian , Humans , Mice , Microscopy, Fluorescence , Neoplasm Invasiveness/physiopathology , Neovascularization, Pathologic/etiology
8.
Proc Natl Acad Sci U S A ; 106(43): 18408-13, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19822749

ABSTRACT

The blood and lymphatic vasculatures are structurally and functionally coupled in controlling tissue perfusion, extracellular interstitial fluids, and immune surveillance. Little is known, however, about the molecular mechanisms that underlie the regulation of bloodlymphatic vessel connections and lymphatic perfusion. Here we show in the adult zebrafish and glass catfish (Kryptopterus bicirrhis) that blood-lymphatic conduits directly connect arterial vessels to the lymphatic system. Under hypoxic conditions, arterial-lymphatic conduits (ALCs) became highly dilated and linearized by NO-induced vascular relaxation, which led to blood perfusion into the lymphatic system. NO blockage almost completely abrogated hypoxia-induced ALC relaxation and lymphatic perfusion. These findings uncover mechanisms underlying hypoxia-induced oxygen compensation by perfusion of existing lymphatics in fish. Our results might also imply that the hypoxia-induced NO pathway contributes to development of progression of pathologies, including promotion of lymphatic metastasis by modulating arterial-lymphatic conduits, in the mammalian system.


Subject(s)
Arteries/metabolism , Catfishes/metabolism , Hypoxia/metabolism , Lymphatic Vessels/metabolism , Nitric Oxide/metabolism , Zebrafish/metabolism , Aging , Animals , Perfusion
9.
Fish Physiol Biochem ; 34(3): 245-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18665462

ABSTRACT

Fluorescein isothiocyanate dextran (FITC-dextran) exchange between the primary (PCS) and secondary (SCS) circulatory systems in the Atlantic cod, Gadus morhua (Linnaeus, 1752), were studied using 20-kDa (n = 4) and 500-kDa (n = 4) FITC-dextran. In order to give a qualitative perspective of the general connection between the PCS and SCS, distribution of plasma-borne tracers (FITC-dextran) in the PCS and SCS were examined. In this study, a total of eight cod were cannulated in the ventral aorta (PCS) and dorsal cutaneous vessel (SCS), for investigation of FITC-dextran disappearance in the PCS and its subsequent appearance in the SCS. FITC-dextran of both sizes was found to be in equilibrium between the PCS and SCS in less than 20 min. This indicates a profound connection between the PCS and SCS in the Atlantic cod, and rapid mixing of tracers between the PCS and SCS. The destination of the injected 500-kDa FITC-dextran was also examined, and it was observed that of the 500-kDa FITC-dextran lost from the primary and secondary vascular systems, 63.0 +/- 9.2% could be recovered from the liver.


Subject(s)
Blood Circulation/physiology , Dextrans/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Gadus morhua/physiology , Animals , Dextrans/blood , Fluorescein-5-isothiocyanate/metabolism , Hematocrit , Liver/chemistry
10.
Anat Rec (Hoboken) ; 290(12): 1500-7, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17968861

ABSTRACT

The structural basis for exchange between maternal serum and ovarian fluid in the viviparous teleost Zoarces viviparus was investigated. Casts of the ovarian vasculature showed that blood supply to the ovary is initially directed to the follicular appendages lining the ovarian wall through thick-walled muscular arteries running along the ovary wall and within the follicular appendages. The follicles had a rich capillary network with diffusion distances between maternal blood and ovarian fluid comparable to those found for gill epithelia, suggesting this is the primary site of gas exchange between maternal plasma and ovarian fluid. Follicular capillary beds were continuous with those in the ovary wall and were eventually drained by the ovarian and intestinal venous systems. The barrier between ovarian fluid and maternal blood consisted of the endothelial cells of the maternal blood vessels and a layer of epithelial cells lining the ovarian lumen, with an intermittent layer of loose connective fibers. Junctional complexes between cells were predominantly anchoring junctions with the occurrence of occasional occluding junctions, supporting the possibility of paracellular transport from maternal serum to ovarian fluid of small molecular weight compounds. Heavy investment in keratin filaments suggests that follicles are tissues of high structural integrity. Evidence for protein synthesis in the ovarian lining was found in the form of Golgi apparatus and rough endoplasmic reticulum. Although numerous cytoplasmic vacuoles and secretory granules were present in both epithelial and endothelial cells, the fate of synthesized protein remains to be determined.


Subject(s)
Fishes/anatomy & histology , Maternal-Fetal Exchange/physiology , Ovary/blood supply , Ovary/ultrastructure , Animals , Capillaries/anatomy & histology , Capillaries/ultrastructure , Endoplasmic Reticulum/ultrastructure , Female , Fishes/physiology , Golgi Apparatus/ultrastructure , Keratins/ultrastructure , Ovarian Follicle/blood supply , Ovarian Follicle/physiology , Ovarian Follicle/ultrastructure , Ovary/physiology , Oxygen/metabolism , Pregnancy , Viviparity, Nonmammalian/physiology
11.
J Exp Biol ; 206(Pt 2): 359-64, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12477905

ABSTRACT

Atlantic cod Gadus morhua has polymorphic haemoglobin, which can be separated into two homozygous types, HbI-1 and HbI-2, and one heterozygous type HbI-1/2. The geographical distribution of Atlantic cod with the different haemoglobin types varies, with the HbI(2) allele occurring at high frequency in northern regions, and the HbI(1) allele dominant in warmer areas. To determine if temperature is a selective parameter in the distribution of the haemoglobin types, the preferred temperature of the homozygous genotypes HbI-1 and HbI-2 was measured. We found that HbI-2 cod preferred a temperature of 8.2+/-1.5 degrees C while HbI-1 cod preferred 15.4+/-1.1 degrees C, and this preference was significant. The effect of hypoxia (35% oxygen saturation) on the preferred temperature was also measured. Previous studies showed that the preferred temperature of fish decreases during hypoxia, and this was the case for HbI-1 cod, which preferred 9.8+/-1.8 degrees C during hypoxia, whereas HbI-2 cod did not show this effect. The results indicate that environmental temperature changes will lead to a distributional change in the different haemoglobin types of Atlantic cod, global warming providing an advantage for HbI-1 cod. However, since HbI-1 cod prefer a low temperature under hypoxic conditions, a combination of increased water temperature and hypoxia could be unfavourable for Atlantic cod stocks.


Subject(s)
Acclimatization/genetics , Acclimatization/physiology , Fishes/genetics , Fishes/physiology , Hemoglobins/genetics , Alleles , Animals , Atlantic Ocean , Climate , Gene Frequency , Genotype , Hypoxia/genetics , Hypoxia/physiopathology , Oxygen , Seawater , Temperature
12.
Article in English | MEDLINE | ID: mdl-12095863

ABSTRACT

Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption values, or standard metabolic rate, and hence it is concluded that that metabolic cold adaptation in the traditional sense is an artefact.


Subject(s)
Acclimatization/physiology , Fishes/metabolism , Animals , Cold Climate , Models, Biological , Oxygen Consumption
13.
J Exp Biol ; 205(Pt 9): 1253-63, 2002 May.
Article in English | MEDLINE | ID: mdl-11948202

ABSTRACT

To determine the energetic costs of rigid-body, median or paired-fin (MPF) swimming versus undulatory, body-caudal fin (BCF) swimming, we measured oxygen consumption as a function of swimming speed in two MPF swimming specialists, Schlegel's parrotfish and Picasso triggerfish. The parrotfish swam exclusively with the pectoral fins at prolonged swimming speeds up to 3.2 total lengths per second (L s(-1); 30 min critical swimming speed, U(crit)). At higher speeds, gait transferred to a burst-and-coast BCF swimming mode that resulted in rapid fatigue. The triggerfish swam using undulations of the soft dorsal and anal fins up to 1.5 L s(-1), beyond which BCF undulations were recruited intermittently. BCF swimming was used continuously above 3.5 L s(-1), and was accompanied by synchronous undulations of the dorsal and anal fins. The triggerfish were capable of high, prolonged swimming speeds of up to 4.1 L s(-1) (30 min U(crit)). In both species, the rates of increase in oxygen consumption with swimming speed were higher during BCF swimming than during rigid-body MPF swimming. Our results indicate that, for these species, undulatory swimming is energetically more costly than rigid-body swimming, and therefore support the hypothesis that MPF swimming is more efficient. In addition, use of the BCF gait at higher swimming speed increased the cost of transport in both species beyond that predicted for MPF swimming at the same speeds. This suggests that, unlike for terrestrial locomotion, gait transition in fishes does not occur to reduce energetic costs, but to increase recruitable muscle mass and propulsive surfaces. The appropriate use of the power and exponential functions to model swimming energetics is also discussed.


Subject(s)
Perciformes/physiology , Swimming/physiology , Tetraodontiformes/physiology , Animals , Energy Metabolism , Gait/physiology , Models, Biological , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...