Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119422, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33477086

ABSTRACT

Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most notable Cannabis components with pharmacological activity and their content in the plant flowers and extracts are considered as critical quality parameters. The new Medical Cannabis industry needs to adopt the quality standards of the pharmaceutical industry, however, the variability of phytocannabinoids content in the plant material often exerts an issue in the inconsistency of the finished product quality parameters. Sampling problems and sample representativeness is a major limitation in the end-point testing, particularly when the expected variation of the product quality parameters is high. Therefore, there is an obvious need for the introduction of Process Analytical Technology (PAT) for continuous monitoring of the critical quality parameters throughout the production processes. Infrared spectroscopy is a promising analytical technique that is consistent with the PAT requirements and its implementation depends on the advances in instrumentation and chemometrics that will facilitate the qualitative and quantitative aspects of the technique. Our present work aims in highlighting the potential of mid-infrared (MIR) spectroscopy as PAT in the quantification of the main phytocannabinoids (THC and CBD), considered as critical quality/material parameters in the production of Cannabis plant and extract. A detailed assignment of the bands related to the molecules of interest (THC, CBD) was performed, the spectral features of the decarboxylation of native flowers were identified, and the specified bands for the acid forms (THCA, CBDA) were assigned and thoroughly explained. Further, multivariate models were constructed for the prediction of both THC and CBD content in extract and flower samples from various origins, and their prediction ability was tested on a separate sample set. Savitskzy-Golay smoothing and the second derivative of the native MIR spectra (1800-400 cm-1 region) resulted in best-fit parameters. The PLS models presented satisfactory R2Y and RMSEP of 0.95 and 3.79% for THC, 0.99 and 1.44% for CBD in the Cannabis extract samples, respectively. Similar statistical indicators were noted for the Partial least-squares (PLS) models for THC and CBD prediction of decarboxylated Cannabis flowers (R2Y and RMSEP were 0.99 and 2.32% for THC, 0.99 and 1.33% for CBD respectively). The VIP plots of all models demonstrated that the THC and CBD distinctive band regions bared the highest importance for predicting the content of the molecules of interest in the respected PLS models. The complexity of the sample (plant tissue or plant extract), the variability of the samples regarding their origin and horticultural maturity, as well as the non-uniformity of the plant material and the flower-ATR crystal contact (in the case of Cannabis flowers) were governing the accuracy descriptors. Taking into account the presented results, ATR-MIR should be considered as a promising PAT tool for THC and CBD content estimation, in terms of critical material and quality parameters for Cannabis flowers and extracts.


Subject(s)
Cannabidiol , Cannabis , Dronabinol , Flowers , Plant Extracts , Technology
2.
J Sep Sci ; 43(17): 3482-3490, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32627964

ABSTRACT

Fast, simple, accurate, and reproducible reverse phase-high-performance liquid chromatography method with direct ultraviolet measurement of memantine hydrochloride in tablets was developed, without any chemical derivatization pretreatment. Three main problems appear during chromatographic analysis of memantine: detection, achieving appropriate column retention, and limited choice of mobile phase components, as a result of memantine molecular structure. Among more than 35 tested columns, the best retention and peak symmetry yielded two C8 and three C18 columns with different characteristics, at a temperature of 30°C, mobile phase composed of 1%, v/v, acetonitrile and 99%, v/v, of 0.05-0.1% phosphoric acid or 2.5-5 mmol phosphate buffer, at flow rate of 1 mL/min and injection volume of 5 µL. The retention time of memantine was between 2.6 and 4 min. Both mobile phase concepts showed perfect linearity, precision, and accuracy. This is the first successful and reproducible direct reverse phase-high-performance liquid chromatography-ultraviolet quantification method for memantine.


Subject(s)
Chromatography, High Pressure Liquid , Memantine/analysis , Ultraviolet Rays , Chromatography, High Pressure Liquid/instrumentation , Equipment Design , Tablets
3.
Appl Spectrosc ; 74(6): 661-673, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32031007

ABSTRACT

Content uniformity is a critical attribute for potent and low-dosage formulations of active pharmaceutical ingredient (API) that, in addition to the formulation parameters, plays pivotal role during pharmaceutical development and production. However, when API content is low, implementing a vibrational spectroscopic analytical tool to monitor the content and blend uniformity remains a challenging task. The aim of this study was to showcase the potentials of mid-infrared (MIR), near-infrared (NIR), and Raman spectroscopy for quantitative analysis of alprazolam (ALZ) in a low-content powder blends with lactose, which is used as a common diluent for tablets produced by direct compression. The offered approach might be further scaled up and exploited for potential application in the process analytical technology (PAT). Partial least square and orthogonal PLS (OPLS) methodologies were employed to build the calibration models from raw and processed spectral data (standard normal variate, first and second derivatives). The models were further compared regarding their main statistical indicators: correlation coefficients, predictivity, root mean square error of estimation (RMSEE), and root mean square error of cross-validation (RMSEEcv). All statistical models presented high regression and predictivity coefficients. The RMSEEcv for the optimal models was 1.118, 0.08, and 0.059% for MIR, NIR, and Raman spectroscopy, respectively. The scarce information content extracted from the ALZ NIR spectra and the major band overlapping with those from lactose monohydrate was the main culprit of poor accuracy in the NIR model, whereas the subsampling instrumental setup (resulting in a non-representative spectral acquisition of the sample) was regarded as a main limitation for the MIR-based calibration model. The OPLS models of the Raman spectra of the powder blends manifested favorable statistical indicators for the accuracy of the calibration model, probably due to the distinctive ALZ Raman pattern resulting in the largest number of predictive spectral points that were used for the mathematical modeling. Furthermore, the Raman scattering calibration model was optimized in narrower scanning range (1700-700 cm-1) and its prediction power was evaluated (root mean square error of prediction, RMSEP = 0.03%). Thus, the Raman spectroscopy presented the most favorable statistical indicators in this comparative study and therefore should be further considered as a PAT for the quantitative determination of ALZ in low-content powder blends.


Subject(s)
Alprazolam/chemistry , Spectrum Analysis, Raman , Chemistry, Pharmaceutical , Drug Compounding , Excipients/chemistry , Powders , Tablets
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 144: 155-62, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25754391

ABSTRACT

Arsenate water-bearing minerals, hörnesite (Alsar, Macedonia) and symplesite (Laubach, Germany), were studied by vibrational (IR and Raman) spectroscopy and X-ray powder diffraction. The observed vibrational spectra in both the high (1100-600 cm(-1)) and low (600-450 cm(-1)) wavenumber regions of AsO4 and H2O vibrations could be used to discriminate the two studied minerals. Spectral differences are especially pronounced in the bending and stretching regions of the H2O vibrations in the IR spectra. The observed bands in IR and Raman spectra were tentatively assigned. To support the assignment, IR spectra were theoretically simulated. These calculations were performed using the crystal structure of parasymplesite (no structural information of symplesite has been published so far) and hörnesite using a 3D periodic plane-wave pseudopotential density functional theory approach applying various combinations of exchange-correlation functionals. In this article, we report on the first experimental study of the vibrational spectra of the very rare symplesite mineral.


Subject(s)
Arsenates/chemistry , Minerals/chemistry , Models, Molecular , Spectrum Analysis, Raman , Vibration , Powders , Spectrophotometry, Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...