Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Res Vet Sci ; 106: 29-36, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27234532

ABSTRACT

Tremetone and possibly other benzofuran ketones are believed to be the toxic compounds in white snakeroot. However, disease has not been reproduced with purified toxins and the concentrations of the benzofuran ketones in white snakeroot populations that cause toxicosis have not been documented. The objectives of this study were to compare the toxicity of seven plant populations, better characterize the clinical and pathologic changes of poisoning, and correlate intoxication with benzofuran ketone content. Four of the seven white snakeroot collections were toxic at the dose and duration used in the study. Affected goats became exercise intolerant, had significant serum enzyme changes and histological lesions in the large appendicular muscles. The incidence and severity of poisoning was not correlated with total doses of tremetone or total benzofuran ketone concentrations suggesting they may not be closely involved in producing toxicity and the possible involvement of an unidentified toxin. The results also demonstrate that white snakeroot populations vary chemically and toxicologically.


Subject(s)
Ageratina/chemistry , Benzofurans/toxicity , Goat Diseases/etiology , Plant Extracts/toxicity , Plant Poisoning/veterinary , Animals , Dose-Response Relationship, Drug , Female , Goats , Random Allocation
2.
J Anim Sci ; 93(7): 3690-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26440035

ABSTRACT

Selenium-accumulator plants are reputed to be unpalatable to large ungulates. Elk (Cervus canadensis) populations in southeastern Idaho overlap with populations of Se-rich plants, but there is no information on the influence of plant Se concentration on elk dietary preferences. The objective of this study was to determine, under controlled conditions, the preference of elk for feeds varying in Se concentrations. Seven yearling female elk (128 ± 5 kg) were purchased from a commercial elk farm in southeastern Idaho and adapted to low-Se alfalfa pellets. Three feeding trials using pellets with predetermined Se concentrations were conducted. Alfalfa pellets were commercially made with the addition of Symphyotrichum ascendens (western aster) so that the pellets contained 0.4, 5, 20, 50, or 100 mg/kg (DM basis) Se. In trial 1, 5 Se-containing alfalfa pellets (0.4, 5, 20, 50, and 100 mg/kg Se) were offered for 10 d; trial 2 used 4 Se-containing alfalfa pellet choices (0.4, 20, 50, and 100 mg/kg), and trial 3 used 3 pellet choices (0.4, 50, and 100 mg/kg) for 6 d. In trial 1, consumption of the control pellets by elk was greater than each of the other pellet choices (P < 0.001). Similarly, consumption of the 5-mg/kg Se pellet differed from control pellet and all other Se-containing pellets (P < 0.0001). There were no differences (P > 0.50) in consumption of the 20-, 50-, or 100-mg/kg Se pellets. In trial 2, elk consumed more (P < 0.0001) of the control pellet than the 20-, 50-, and 100-mg/kg Se pellets. Similarly, elk consumed more (P < 0.0001) of the 20-mg/kg Se pellet than the 50- and 100-mg/kg Se pellets. There were no differences (P > 0.99) in elk consumption of the 50- and 100-mg/kg Se pellets. In trial 3, elk consumption of the control and 50- and 100-mg/kg Se pellets differed (P ≤ 0.03) from one another each day except that on d 1 and 2, where elk consumption of the 50- and 100-mg/kg Se pellets did not differ (P ≥ 0.32). Elk clearly discriminated against pellets with the highest Se concentrations when they were given pellets with differing Se concentrations. These results suggest that elk are not likely to select forages with high Se concentrations, particularly when high-Se plants are present in a rangeland situation with numerous other forage choices.


Subject(s)
Animal Feed/analysis , Deer/physiology , Diet/veterinary , Selenium/chemistry , Animal Nutritional Physiological Phenomena , Animals , Dose-Response Relationship, Drug , Female , Food Preferences
3.
Res Vet Sci ; 95(3): 1163-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24210249

ABSTRACT

Sheep can be acutely poisoned by selenium (Se) accumulating forages which often contain selenate or Se-methylselenocysteine as their predominant forms. Excess Se can be eliminated via respiration. Sheep were given a single oral dose of 0, 1, 2, 3, 4, or 6 mg Se/kg BW as sodium selenate and Se-methylselenocysteine or 6 mg Se/kg BW as sodium selenite or selenomethionine. Expired air samples were collected and analyzed for Se. The Se concentration of the expired air reflected a dose-dependent increase at individual time points for both Se-methylselenocysteine and sodium selenate, however, Se content was greater and eliminated more rapidly from sheep receiving Se-methylselenocysteine. The mean Se concentration in respired air from sheep administered 6 mg Se/kg BW of different selenocompounds was greatest in sheep dosed Se-methylselenocysteine > selenomethionine > sodium selenate > sodium selenite. The Se concentration in respired air of acutely poisoned sheep is significantly different for different chemical forms of Se.


Subject(s)
Selenic Acid/pharmacokinetics , Selenocysteine/analogs & derivatives , Administration, Oral , Animals , Breath Tests , Dose-Response Relationship, Drug , Exhalation , Selenic Acid/administration & dosage , Selenic Acid/analysis , Selenocysteine/administration & dosage , Selenocysteine/analysis , Selenocysteine/pharmacokinetics , Sheep
4.
J Anim Sci ; 91(9): 4501-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23825349

ABSTRACT

Consumption of Se accumulator plants by livestock can result in Se intoxication. Recent research indicates that the Se forms most common in Se accumulator plants are selenate and Se-methylselenocysteine (MeSeCys). In this study the absorption, distribution, and elimination kinetics of Se in serum and whole blood of lambs dosed with a single oral dose of (1, 2, 3, or 4 mg Se/kg BW) of sodium selenate or MeSeCys were determined. The Se concentrations in serum and whole blood for both chemical forms of Se followed simple dose-dependent relationships. Se-methylselenocysteine was absorbed more quickly and to a greater extent in whole blood than sodium selenate, as observed by a greater peak Se concentration (Cmax; P < 0.0001), and faster time to peak concentration (Tmax; P < 0.0001) and rate of absorption (P < 0.0001). The rate of absorption and Tmax were also faster (P < 0.0001) in serum of lambs dosed with MeSeCys compared with those dosed sodium selenate at equimolar doses; however, Cmax in serum was greater (P < 0.0001) in lambs dosed with sodium selenate compared with those dosed MeSeCys at equimolar doses. The MeSeCys was absorbed 4 to 5 times faster into serum and 9 to 14 times faster into whole blood at equimolar Se doses. There were dose-dependent increases in the area under the curve (AUC) for Se in serum and whole blood of lambs dosed with both sodium selenate and MeSeCys. In whole blood the MeSeCys was approximately twice as bioavailable as sodium selenate at equimolar doses as observed by the AUC, whereas in serum there were no differences (P > 0.05) in AUC at the same doses. At 168 h postdosing the Se concentration in whole blood remained much greater (P < 0.0001) in lambs dosed with MeSeCys as compared with lambs dosed with sodium selenate; however, the serum Se concentrations were not different between treatments at the same time point. The results presented in this study demonstrate that there are differences between the kinetics of different selenocompounds when orally dosed to sheep. Therefore, in cases of acute selenosis, it is important to understand the chemical form to which an intoxicated animal was exposed when determining the importance and meaning of Se concentration in serum or whole blood obtained at various times postexposure.


Subject(s)
Selenic Acid/pharmacokinetics , Selenocysteine/analogs & derivatives , Sheep, Domestic/metabolism , Administration, Oral , Animals , Dose-Response Relationship, Drug , Kinetics , Selenic Acid/administration & dosage , Selenic Acid/blood , Selenocysteine/administration & dosage , Selenocysteine/blood , Selenocysteine/pharmacokinetics , Sheep, Domestic/growth & development
5.
Toxicon ; 73: 88-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23831837

ABSTRACT

Rayless goldenrod (Isocoma pluriflora) sporadically poisons horses and other livestock in the southwestern United States. Similar to livestock poisoning by white snakeroot (Ageratina altissima) in the midwestern United States, previous research suggests that benzofuran ketones (BFK: tremetone, dehydrotremetone, 6-hydroxytremetone, and 3-oxyangeloyl-tremetone) are responsible for the toxicity of rayless goldenrod. However, experimental reproduction of rayless goldenrod-induced disease and detailed descriptions of poisoning in horses with known concentrations of tremetone and other BFK has not been documented. In this study four horses were fed increasing amounts of rayless goldenrod to obtain doses of approximately 0, 10, 30, and 60 mg BFK/kg BW for 14 days. After seven days of dosing the horse dosed with 60 mg BFK/kg BW horse developed depression, reluctance to eat, dehydration, trembling, and muscle fatigue. Biochemical alterations including increases in the serum enzyme activities of CK, AST, ALT, and LDH, and increased cardiac troponin I concentration, were also identified. Physiologically the clinically poisoned horse had decreased endurance seen as reluctance to perform on the treadmill with increased resting heart rate and a prolonged recovery of heart rate following treadmill exercise. The condition of the horse continued to decline and it was euthanized and necropsied on day 10. At necropsy the myocardium was pale and soft and many of the appendicular and large apical muscles were pale and moist. Histologically, the myocardium had extensive myocardial degeneration and necrosis with extensive fibrosis and multifocal mineralization. Several of the large appendicular muscles in this horse also had small foci of skeletal muscle degeneration and necrosis. Less severe myocardial changes were also identified in the horse dosed with 30 mg BFK/kg BW after 14 days of dosing. No clinical, biochemical or histologic changes were identified in the control horse and the horse dosed with 10 mg BFK/kg BW. These results suggest that doses of 60 mg BFK/kg BW for seven days produce extensive myocardial lesions in horses. The horse dosed with 30 mg BFK/kg BW developed less severe, but similar myocardial lesions over a longer duration, this suggests that poisoning may be cumulative and lower doses of longer duration are also toxic. Horses seem to be uniquely sensitive to rayless goldenrod-induced myocardial disease, therefore cardiac troponin I may be a useful marker of rayless goldenrod poisoning in horses. More work is needed to determine which BFK produce myocardial toxicity and better determine the effects of dose and duration on poisoning in horses.


Subject(s)
Asteraceae/chemistry , Benzofurans/toxicity , Cardiomyopathies/etiology , Plant Poisoning/complications , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Benzofurans/analysis , Benzofurans/blood , Dose-Response Relationship, Drug , Electrocardiography , Heart Rate/drug effects , Histological Techniques , Horses , Ketones/blood , Southwestern United States , Troponin I
6.
J Anim Sci ; 89(5): 1650-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21521823

ABSTRACT

Death camas (Zigadenus spp.) is a common poisonous plant on foothill rangelands in western North America. The steroidal alkaloid zygacine is believed to be the primary toxic component in death camas. Poisonings on rangelands generally occur in the spring when death camas is abundant, whereas other more desirable forage species are limited in availability. In most cases where livestock are poisoned by plants in a range setting, there is more than one potential poisonous plant in that area. One common poisonous plant that is often found growing simultaneously in the same area as death camas is low larkspur (Delphinium nuttallianum). Consequently, the objectives of this study were to conduct acute toxicity studies in mice and to determine if coadministration of low larkspur will exacerbate the toxicity of death camas. We first characterized the acute toxicity of zygacine in mice. The LD(50) of zygacine administered intravenously (i.v.) and orally was 2.0 ± 0.2 and 132 ± 21 mg/kg, respectively. The rate of elimination of zygacine from whole blood was determined to be 0.06 ± 0.01/min, which corresponds to an elimination half-life of 13.0 ± 2.7 min. The i.v. LD(50) of total alkaloid extracts from a Utah and a Nevada collection were 2.8 ± 0.8 and 2.2 ± 0.3 mg/kg, respectively. The i.v. LD(50) of methyllycaconitine (MLA), a major toxic alkaloid in low larkspur, was 4.6 ± 0.5 mg/kg, whereas the i.v. LD(50) of a 1:1 mixture of MLA and zygacine was 2.9 ± 0.7 mg/kg. The clinical signs in mice treated with this mixture were very similar to those of mice treated with zygacine alone, including the time of onset and death. These results suggest that there is an additive effect of coadministering these 2 alkaloids i.v. in mice. The results from this study increase knowledge and understanding regarding the acute toxicity of death camas. As combined intoxications are most likely common, this information will be useful in further developing management recommendations for ranchers and in designing additional experiments to study the toxicity of death camas to livestock.


Subject(s)
Aconitine/analogs & derivatives , Alkaloids/toxicity , Delphinium/chemistry , Livestock/metabolism , Plant Poisoning/veterinary , Zigadenus/chemistry , Aconitine/metabolism , Aconitine/pharmacokinetics , Aconitine/toxicity , Alkaloids/metabolism , Alkaloids/pharmacokinetics , Animals , Lethal Dose 50 , Male , Mice , Nevada , Pharmacokinetics , Plant Poisoning/etiology , Plant Poisoning/metabolism , Seasons , Utah
7.
J Appl Toxicol ; 29(5): 414-21, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19301244

ABSTRACT

Cyclopamine, a steroidal alkaloid, from the plant Veratrum californicum is teratogenic, causing a range of different birth defects. The critical window for cyclopamine-induced synophthalmia formation has been reported to be gestational day (GD) 14. The objectives of this study were to better describe cyclopamine-induced craniofacial deformities, to better define the window of susceptibility to synophthalmia formation, and to characterize cyclopamine toxicokinetics in sheep. Ewes were dosed i.v. with purified cyclopamine for toxicokinetic analysis. Another four groups of ewes were dosed orally twice daily with 0.88 g/kg of V. californicum on GD 13, 14 or 15 or consecutively on GD days 13-15. Pregnancy and pre-partum fetal malformations were determined by ultrasound imaging on GD 60. At parturition lambs were assessed for gross malformations. The elimination half-life of cyclopamine in ewes was determined to be 1.1 +/- 0.1 h. The rapid clearance of cyclopamine indicates that ingestion of V. californicum must occur during a very narrow window for synophthalmia formation to occur. Ewes dosed with V. californicum on GD 13 or 14 had lambs with various craniofacial malformations including cyclopia, maxillary dysplasia and mandibular micrognathia. Ewes dosed on GD 15 delivered normal lambs. Ewes dosed consecutively on GD 13-15 were not pregnant at GD 60 and Veratrum-induced embryonic death was assumed to be the cause. Interestingly, lambs with cyclopia were smaller, under-developed and appeared premature even though their twin appeared fully developed. Initial evaluations suggest this was due to placental dysplasia.


Subject(s)
Holoprosencephaly/chemically induced , Maternal Exposure/adverse effects , Sheep/abnormalities , Teratogens/toxicity , Veratrum Alkaloids/toxicity , Animals , Dose-Response Relationship, Drug , Female , Gestational Age , Holoprosencephaly/embryology , Plant Roots/chemistry , Pregnancy , Sheep/embryology , Teratogens/isolation & purification , Teratogens/pharmacokinetics , Time Factors , Veratrum/chemistry , Veratrum Alkaloids/isolation & purification , Veratrum Alkaloids/pharmacokinetics
8.
J Anim Sci ; 87(4): 1558-64, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19098233

ABSTRACT

Although the mechanism of action for larkspur alkaloids has been described, little information is available on the variation of the physiological response of individual animals to larkspur alkaloids. Anecdotal observations and pilot studies in cattle indicate that there is animal-to-animal variation in response to a debilitating dose of larkspur alkaloids. The objective of this study was to determine whether there is variation in susceptibility of different strains of mice to larkspur alkaloid toxicosis and to identify factors responsible for the variation that could then be used as a model for studies in cattle. The acute toxicity of methyllycaconitine (MLA) in 9 different inbred strains of mice was compared. The rank order, from most to least susceptible, was A/J>B10>FVB>BALB/c>C57Bl/6>NZW>C3H>DBA>129. The calculated LD(50) ranged from 3.3+/-0.2 to 5.8+/-0.8 mg/kg of BW. The toxicokinetic profiles of MLA in the susceptible A/J strain and the more resistant 129 strain were compared to determine whether their differences in susceptibility were due to differences in their ability to eliminate MLA. The differences in toxicokinetic variables observed did not explain the differences in susceptibility. The protein expression of various nicotinic acetylcholine receptor (nAChR) subunits was also compared between the more resistant 129 strain and the susceptible A/J strain. The 129 strain of mice had twice the amount of alpha7 nAChR subunit expression as the A/J strain, which was in direct proportion to the approximately 2-fold difference in LD(50). There was also a significant difference (P<0.05) in expression of the alpha3 and alpha5 nAChR subunits between the 129 and A/J strains, with the 129 strain having a greater expression in each case. These data suggest that the increased susceptibility of the A/J mice could be due to a reduced expression of nAChR subunits. Similar analyses need to be made in cattle to determine whether there is a difference between breeds in susceptibility to larkspur poisoning and to identify the factors that regulate their susceptibility to larkspur poisoning. This information would be useful for livestock producers in their breeding, culling, and grazing management programs to reduce or prevent larkspur poisoning on rangelands.


Subject(s)
Aconitine/analogs & derivatives , Plant Extracts/toxicity , Aconitine/pharmacokinetics , Aconitine/toxicity , Animals , Delphinium/chemistry , Gene Expression Regulation/drug effects , Immunoblotting , Lethal Dose 50 , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Plant Extracts/pharmacokinetics , Random Allocation , Receptors, Nicotinic/metabolism , Species Specificity
9.
J Anim Sci ; 86(10): 2761-70, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18539831

ABSTRACT

Larkspur plants contain numerous norditerpenoid alkaloids, which include the 7,8-methylenedioxylycoctonine (MDL)-type alkaloids and the N-(methylsuccinimido)anthranoyllycoctonine (MSAL)-type alkaloids. The MSAL-type alkaloids are generally much more toxic (typically >20 times). Toxicity of many tall larkspurs, such as Delphinium barbeyi, has been attributed to its large concentration of MSAL-type alkaloids, including methyllycaconitine (MLA). However, the norditerpenoid alkaloids found in the greatest concentrations in most D. barbeyi populations are either deltaline or 14-O-acetyldictyocarpine (14-OAD), both less toxic MDL-type alkaloids. Although the individual toxicities of MLA, 14-OAD, and deltaline have been determined, the impact (additive or antagonistic) that large concentrations of deltaline or 14-OAD in the plant have on the toxicity of MLA is unknown. Consequently, the effect of MDL-type alkaloids on the toxicity of MLA was compared by using median lethal dose (LD(50)) and toxicokinetic profiles of the brainand muscle from mice receiving i.v. administration of these alkaloids, individually or in combination, at ratios of 1:1, 1:5, and 1:25 MLA to MDL-type alkaloids. The LD(50) for MLA alone was 4.4 +/- 0.7 mg/kg of BW, whereas the coadministration of MLA and deltaline at 1:1, 1:5, and 1:25 resulted in an LD(50) of 2.7, 2.5, and 1.9 mg/kg of BW, respectively. Similarly, the coadministration of MLA and 14-OAD at 1:1, 1:5, and 1:25 resulted in an LD(50) of 3.1, 2.2, and 1.5 mg/kg of BW, respectively. Coadministration of mixtures did not result in increased MLA bioavailability or alterations in clearance from the brain and muscle. Consequently, the increased toxicity of the mixtures was not a result of increased MLA bioavailability (based on the maximum concentrations observed) or alterations in MLA clearance from the brain and muscle, because these were unchanged. These results demonstrate that MDL-type alkaloids have an additive effect on MLA toxicity in mice and may also play a role in the overall toxicity of tall larkspur plants in cattle.


Subject(s)
Aconitine/analogs & derivatives , Alkaloids/pharmacology , Diterpenes/pharmacology , Aconitine/pharmacokinetics , Aconitine/toxicity , Alkaloids/administration & dosage , Alkaloids/chemistry , Animals , Area Under Curve , Diterpenes/administration & dosage , Diterpenes/chemistry , Half-Life , Lethal Dose 50 , Male , Mice , Molecular Structure , Muscle, Skeletal/metabolism
10.
J Chem Ecol ; 34(1): 32-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18060459

ABSTRACT

Locoweeds (Astragalus and Oxytropis spp. that contain the toxic alkaloid swainsonine) cause widespread poisoning of livestock on western rangelands. There are 354 species of Astragalus and 22 species of Oxytropis in the US and Canada. Recently, a fungal endophyte, Embellisia spp., was isolated from Astragalus and Oxytropis spp. and shown to produce swainsonine. We conducted a survey of the major locoweeds from areas where locoweed poisoning has occurred to verify the presence of the endophyte and to relate endophyte infection with swainsonine concentrations. Species found to contain the fungal endophyte and produce substantial amounts of swainsonine were A. wootoni, A. pubentissimus, A. mollissimus, A. lentiginosus, and O. sericea. Astragalus species generally had higher concentrations of swainsonine than Oxytropis. Swainsonine was not detected in A. alpinus, A. cibarius, A. coltonii, A. filipes, or O. campestris. The endophyte could not be cultured from A. mollissimus var. thompsonii or A. amphioxys, but was detected by polymerase chain reaction, and only 30% of these samples contained trace levels of swainsonine. Further research is necessary to determine if the endophyte is able to colonize these and other species of Astragalus and Oxytropis and determine environmental influences on its growth and synthesis of swainsonine.


Subject(s)
Ascomycota/physiology , Astragalus Plant/microbiology , Mycotoxins/metabolism , Oxytropis/microbiology , Swainsonine/metabolism , Ascomycota/isolation & purification , Astragalus Plant/metabolism , DNA, Fungal/analysis , Oxytropis/metabolism , Polymerase Chain Reaction
11.
J Appl Toxicol ; 28(3): 356-63, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17631662

ABSTRACT

The aim of the present study was to determine and compare the clinical, hematological, biochemical and histopathological changes induced by cyanide, thiocyanate and chokecherry (Prunus virginiana) in goats. Sixteen Boer-Spanish cross-bred female goats were divided into four treatment groups: (1) control, (2) potassium cyanide (KCN) at 3.8 mg kg(-1) day(-1), (3) potassium thiocyanate (KSCN) at 4.5 mg kg(-1) day(-1) and (4) ground frozen chokecherry leaves and flowers at a target dose of 2.5 mg HCN kg(-1) day(-1), all for 4 weeks. Clinical signs were observed in two goats treated with chokecherry. Only sporadic changes were found in the hematological and blood chemical panel. Goats treated with chokecherry and thiocyanate had an increased number of vacuoles in the colloid of thyroid glands. Spongiosis and spheroids were found in the mesencephalon from goats treated with KCN and chokecherry. These findings suggest the thyroid lesions can be attributed to thiocyanate, whereas the effects on the nervous system were most likely caused by cyanide.


Subject(s)
Goats , Plant Structures/toxicity , Poisons/toxicity , Potassium Cyanide/toxicity , Prunus , Thiocyanates/toxicity , Thyroid Gland/drug effects , Animals , Body Weight/drug effects , Eating/drug effects , Female , Flowers/toxicity , Hematologic Tests , Mesencephalon/drug effects , Mesencephalon/pathology , Plant Leaves/toxicity , Plants, Toxic , Thiocyanates/blood , Thyroid Gland/pathology , Toxicity Tests , Vacuoles/pathology
12.
J Anim Sci ; 85(7): 1836-41, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17431041

ABSTRACT

Locoweed species (Astragalus and Oxytropis spp.) are a serious toxic plant problem for grazing livestock. Horses and sheep have been conditioned to avoid eating locoweed using the aversive agent LiCl. The objective of this study was to determine if previous locoweed intoxication affects food aversion learning in horses and sheep. Horses and sheep were divided into 3 treatment groups: control (not fed locoweed and not averted to a novel feed); locoweed-novel feed averted (fed locoweed and averted to a novel feed); and averted (not fed locoweed and averted to a novel feed). Animals in the locoweed-novel feed averted groups were fed locoweed during 2 periods of 21 and 14 d, respectively, with each feeding period followed by a 14-d recovery period. Animals were averted to a novel test feed at the end of the first locoweed-feeding period, and periodically evaluated for the strength and persistence of the aversion. During the first recovery period, locoweed-novel feed averted horses ate less (9.5% of amount offered) of the test feed than did control horses (99.8%) and did not generally differ from averted horses (0%). During recovery period 2, locoweed-novel feed averted horses (4.3%) differed (P = 0.001) in consumption (% of offered) of the test feed from controls (100%) and the averted group (0%). Locoweed-novel feed averted sheep differed (P = 0.001) from controls (14.4 vs. 99.5%, respectively, during recovery period 1), whereas locoweed-novel feed averted sheep did not differ (P > 0.50) from averted sheep (0.6%). During the second recovery period, control sheep (100%) differed (P < 0.05) from averted (0%) and locoweed-novel feed averted (12.2%) groups. Two intoxicated sheep (locoweed-novel feed averted) partially extinguished the aversion during the first recovery period, but an additional dose of LiCl restored the aversion. Two of 3 intoxicated horses had strong aversions that persisted without extinction; 1 horse in the locoweed-novel feed averted group had a weaker aversion. These findings suggest that horses and sheep previously intoxicated by locoweeds can form strong and persistent aversions to a novel feed, but in some animals, those aversions may not be as strong as in animals that were never intoxicated.


Subject(s)
Astragalus Plant , Conditioning, Psychological , Feeding Behavior/physiology , Oxytropis , Plant Poisoning/veterinary , Taste/physiology , Animal Feed , Animals , Aversive Therapy , Behavior, Animal , Eating/physiology , Food Preferences , Horse Diseases/prevention & control , Horses , Lithium Chloride/adverse effects , Lithium Chloride/pharmacology , Plant Poisoning/prevention & control , Random Allocation , Sheep , Sheep Diseases/prevention & control , Swainsonine/blood
13.
J Appl Toxicol ; 25(6): 445-50, 2005.
Article in English | MEDLINE | ID: mdl-16196001

ABSTRACT

The purpose of this work is to determine and describe the effects of subacute cyanide toxicity to goats. Eight female goats were divided into two groups. The first group of five animals was treated with 8.0 mg KCN kg(-1) body weight day(-1) for seven consecutive days. The second group of three animals was treated with water as controls. Complete physical examination, including observation for behavior changes, was conducted before and after dosing. One treated animal was euthanized immediately after dosing. Later, two of the remaining treated animals and a control goat were euthanized after a 30-day recovery period. Euthanized animals were necropsied and tissues were collected and prepared for histologic studies. Clinical signs in treated goats were transient and included depression and lethargy, mild hyperpnea and hyperthermia, arrhythmias, abundant salivation, vocalizations, expiratory dyspnea, jerky movements and head pressing. Two goats developed convulsions after day 3 of treatment. One animal developed more permanent behavioral changes as she became less dominant and aggressive. Histologic changes included mild hepatocellular vacuolation and degeneration, mild vacuolation and swelling of the proximal convoluted tubules of the kidneys and spongiosis of the white matter (status spongiosis) of the cerebral white tracts, internal capsule, cerebellar peduncles, spinal cord and peripheral nerves. In summary, sub-lethal cyanide intoxication in goats resulted in behavioral changes, and during the treatment period animals showed delayed signs of toxicity. Significant histologic lesions in goats were observed and need to be characterized further.


Subject(s)
Behavior, Animal/drug effects , Goats/physiology , Potassium Cyanide/toxicity , Animals , Cerebellum/drug effects , Cerebellum/pathology , Female , Goats/blood , Goats/metabolism , Liver/drug effects , Liver/pathology , Medulla Oblongata/drug effects , Medulla Oblongata/pathology , Potassium Cyanide/administration & dosage , Potassium Cyanide/blood , Seizures/chemically induced , Thiocyanates/blood
14.
Vet Pathol ; 42(5): 566-78, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16145203

ABSTRACT

Locoweed poisoning has been reported in wildlife, but it is unknown whether mule deer (Odocoileius hemionus) are susceptible. In areas that are heavily infested with locoweed, deer and elk (Cervus elaphus nelsoni) have developed a spongiform encephalopathy, chronic wasting disease (CWD). Although these are distinct diseases, no good comparisons are available. The purpose of this study was to induce and describe chronic locoweed poisoning in deer and compare it with the lesions of CWD. Two groups of four mule deer were fed either a complete pelleted ration or a similar ration containing 15% locoweed (Oxytropis sericea). Poisoned deer lost weight and developed a scruffy, dull coat. They developed reluctance to move, and movement produced subtle intention tremors. Poisoned deer had extensive vacuolation of visceral tissues, which was most severe in the exocrine pancreas. Thyroid follicular epithelium, renal tubular epithelium, and macrophages in many tissues were mildly vacuolated. The exposed deer also had mild neuronal swelling and cytoplasmic vacuolation that was most obvious in Purkinje cells. Axonal swelling and dystrophy was found in many white tracts, but it was most severe in the cerebellar peduncles and the gracilis and cuneate fasciculi. These findings indicate that deer are susceptible to locoweed poisoning, but the lesions differ in severity and distribution from those of other species. The histologic changes of locoweed poisoning are distinct from those of CWD in deer; however, the clinical presentation of locoweed poisoning in deer is similar. Histologic and immunohistochemical studies are required for a definitive diagnosis.


Subject(s)
Deer , Oxytropis/toxicity , Plant Poisoning/pathology , Plant Poisoning/veterinary , Animals , Brain/drug effects , Brain/pathology , Deer/blood , Female , Male , Pancreas/drug effects , Pancreas/pathology , Plant Poisoning/blood , Thyroid Gland/drug effects , Thyroid Gland/pathology , Time Factors
15.
J Anim Sci ; 81(9): 2285-93, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12968704

ABSTRACT

Spotted locoweed (Astragalus lentiginosus var. diphysus) is a toxic, perennial plant that may, if sufficient precipitation occurs, dominate the herbaceous vegetation of pinyon-juniper woodlands on the Colorado Plateau. Six cow/calf pairs and four horses grazed a 20-ha pasture with dense patches of locoweed in eastern Arizona during spring 1998. Locoweed density was 0.7 plants/m2 in the pasture. Locoweed averaged 30.4% NDF and 18.4% CP. Concentrations of the locoweed toxin, swainsonine, fluctuated from 1.25 to 2 mg/g in locoweed. Horses ate more (P < 0.01) bites of locoweed than did cows (15.4 and 5.1% of bites, respectively). Horses generally increased locoweed consumption over time since they ate approximately 5% of bites in the preflower stage compared with 25% of bites in the pod stage. Cattle consumed almost no locoweed (< 1% of bites) until the pod stage, when they increased consumption to 15% of bites. Horses were very avid (approximately 65 to 95% of bites) in selecting the small quantities (approximately 40 to 150 kg/ha) of available green grass, and it appeared that their propensity to eat scarce green forage influenced their locoweed consumption as well. Horses ate relatively little dry grass, even when it was abundant, whereas cattle ate large amounts of dry grass until green grasses became more abundant. Calves began eating locoweed on the same day as their dams and ate approximately 20% of their bites as locoweed. Serum concentrations of swainsonine were higher (P < 0.05) in horses than in cattle (433 vs. 170 ng/mL, respectively). Baseline swainsonine was zero in all animals, but swainsonine was rapidly increased to above 800 ng/mL in serum of horses as they ate locoweed. Horses exhibited depression after eating locoweed for about 2 wk; after 5 wk of exposure, horses became anorectic and behaviorally unstable. Although limited in scope, this study indicates that horses should not be exposed to spotted locoweed.


Subject(s)
Astragalus Plant/poisoning , Behavior, Animal/drug effects , Cattle Diseases/etiology , Horse Diseases/etiology , Plant Poisoning/veterinary , Swainsonine/poisoning , Animal Feed/poisoning , Animal Nutritional Physiological Phenomena , Animals , Anorexia/chemically induced , Anorexia/veterinary , Arizona , Astragalus Plant/chemistry , Cattle , Cattle Diseases/blood , Enzyme Inhibitors/blood , Enzyme Inhibitors/poisoning , Female , Horse Diseases/blood , Horses , Male , Plants, Toxic , Species Specificity , Swainsonine/administration & dosage , Swainsonine/blood
16.
J Anim Sci ; 81(5): 1237-41, 2003 May.
Article in English | MEDLINE | ID: mdl-12772851

ABSTRACT

Larkspur poisoning sporadically kills from 5 to 15% of the cattle on North American mountain rangelands. Of the 40 different diterpenoid larkspur alkaloids, the one that is thought to be responsible for much of the toxicity has been identified as methyllycaconitine (MLA). Little is known of MLA toxicokinetics or excretion. The purpose of this study was to further characterize the clinical effects of MLA toxicity in mice and determine the toxicokinetics of MLA excretion. Eight groups of mice were dosed intravenously with 2.0 mg/kg of BW of MLA, killed, and necropsied at 0, 1, 2, 5,10,15, 30, and 60 min after injection. Treated animals were reluctant to move, trembled, and developed dyspnea, muscular twitches, and convulsions. Within several minutes, the clinical signs abated and behavior slowly returned to normal over approximately 20 min. At necropsy serum, brain, liver, kidney, and skeletal muscle were collected and frozen. Blood and tissues were extracted and analyzed for MLA with HPLC and electron spray mass spectrometry. Blood MLA elimination followed a normal biphasic redistribution and excretion pattern (r = 0.99) with a K of elimination of 0.0376 and half-life of 18.4 min. Other tissues had similar clearance rates. These data indicate the MLA is rapidly distributed and excreted. In mice, the clinical effects of poisoning seem to affect the central nervous system, causing dyspnea and "explosive" muscular twitches and convulsions. Because livestock commonly eat larkspur at subclinical doses, they are likely to have larkspur alkaloids in many tissues. These results suggest that animals exposed to larkspur should rapidly excrete MLA (within several hours) and that the residues in animal tissues are not likely to be a problem if animals are given several days to allow toxin clearance.


Subject(s)
Aconitine/analogs & derivatives , Aconitine/pharmacokinetics , Aconitine/toxicity , Insecticides/pharmacokinetics , Insecticides/toxicity , Aconitine/analysis , Animals , Brain/metabolism , Cattle , Chromatography, High Pressure Liquid/methods , Delphinium , Dose-Response Relationship, Drug , Drug Residues , Half-Life , Injections, Intravenous , Insecticides/analysis , Kidney/metabolism , Liver/metabolism , Male , Metabolic Clearance Rate , Mice , Muscle, Skeletal/metabolism , Random Allocation , Tissue Distribution
17.
J Anim Sci ; 81(1): 232-8, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12597394

ABSTRACT

The purpose of this study was to determine whether larkspur toxins conjugated to protein carriers would promote active immunity in mice. Mice were injected with several larkspur toxin-protein conjugates or adjuvant alone to determine whether the resulting immunological response altered animal susceptibility to methyllycaconitine, the major toxic larkspur alkaloid. Although vaccinations increased the calculated lethal dose 50% (LD50) for intravenous methyllycaconitine toxicity, overlapping confidence intervals did not provide evidence of differences between the vaccinated and control groups. In the lycoctonine conjugate (LYC)-vaccinated group, mouse survival was related (P = 0.001) to serum titers for methyllycaconitine doses up to 4.5 mg/kg of body weight. When mice withlow antibody titers were removed from the vaccinated groups in which titer was related to survival, the recalculated LD50 estimates were 20% greater than the LD50 of the control group. However, the 95% confidence intervals of the recalculated LD50 groups overlapped with the control groups. Overall, these results suggest that vaccination altered methyllycaconitine toxicity in mice and that vaccination may be useful in decreasing the effects of larkspur toxins in animals. Additional studies are warranted to continue development of potential larkspur vaccines for livestock.


Subject(s)
Aconitine/analogs & derivatives , Aconitine/toxicity , Delphinium/poisoning , Plant Extracts/toxicity , Plant Poisoning/veterinary , Vaccination/veterinary , Aconitine/immunology , Animals , Animals, Domestic , Binding, Competitive , Biological Assay/veterinary , Delphinium/chemistry , Dose-Response Relationship, Drug , Immunity, Active , Lethal Dose 50 , Mice , Plant Extracts/immunology , Plant Poisoning/immunology , Plant Poisoning/prevention & control , Random Allocation , Survival Analysis
18.
J Anim Sci ; 80(1): 79-83, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11831531

ABSTRACT

Locoweed (Oxytropis sericea) is a serious poisoning problem for horses grazing on infested rangelands in the western United States. Our objectives were to determine 1) whether lithium chloride or apomorphine would condition aversions to palatable foods, and at what doses, and 2) whether horses could be averted to fresh locoweed in a pen and grazing situation. Apomorphine was not an acceptable aversive agent because at the dose required to condition an aversion (> or = 0.17 mg/kg BW), apomorphine induced unacceptable behavioral effects. Lithium chloride given via stomach tube at 190 mg/kg BW conditioned strong and persistent aversions to palatable feeds with minor signs of distress. Pen and grazing tests were conducted in Colorado to determine if horses could be averted to fresh locoweed. Pen tests indicated that most horses (5/6) were completely averted from locoweed. Treated horses ate 34 g of fresh locoweed compared to 135 g for controls (P < 0.01) during three pen tests when offered 150 g per test. One horse (T) in the treatment group ate locoweed each time it was offered in the pen, but ate no locoweed while grazing. In the grazing trial, control horses averaged 8.6% of bites of locoweed (P < 0.01) during the grazing portion of the study, whereas treated horses averaged <0.5%. One treated horse (S) accounted for all consumption; he consumed 15% of his bites as locoweed in a grazing bout on d 2 of the field study. Thereafter, he was dosed a second time with lithium chloride and ate no locoweed in the subsequent 5 d. Three of six horses required two pairings of lithium chloride with fresh locoweed to condition a complete aversion. The results of this study indicate that horses can be averted from locoweed using lithium chloride as an aversive agent, and this may provide a management tool to reduce the risk of intoxication for horses grazing locoweed-infested rangeland.


Subject(s)
Astragalus Plant/poisoning , Behavior, Animal/physiology , Feeding Behavior/physiology , Horses/physiology , Taste/physiology , Animals , Apomorphine/pharmacology , Aversive Therapy , Conditioning, Psychological , Dose-Response Relationship, Drug , Food Preferences , Horse Diseases/prevention & control , Horses/psychology , Housing, Animal , Lithium Chloride/pharmacology , Plant Poisoning/prevention & control , Plant Poisoning/veterinary , Random Allocation
19.
J Nat Toxins ; 10(4): 273-81, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11695816

ABSTRACT

Switchgrass (Panicum virgatum L.) has been reported to be hepatotoxic, causing photosensitization in lambs and horses. In this study we show the presence of steroidal saponins in two samples of switchgrass that has been implicated in the poisonings of sheep and horses. After hydrolysis of the saponins, diosgenin was determined to be the major sapogenin in both switchgrass samples. We also confirmed the presence of diosgenin in kleingrass after hydrolysis of saponins extracted from it.


Subject(s)
Panicum/chemistry , Sapogenins/isolation & purification , Saponins/isolation & purification , Chromatography, High Pressure Liquid , Flow Injection Analysis , Gas Chromatography-Mass Spectrometry , Hydrolysis
20.
Vet Hum Toxicol ; 43(5): 302-4, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11577940

ABSTRACT

About 200/2500 Spanish goats foraging on mountain rangelands of western Montana developed neurologic disease with severe rear limb weakness, knuckling of the rear fetlocks, and a hopping gait. Sick goats were of all ages and in good flesh, though they often had dull, shaggy coats. Some mildly affected animals recovered after being moved to feed lots, but others progressed to recumbency, seizures and death. At necropsy both moribund and clinically affected animals had few gross lesions; 1 animal had contusions and puncture wounds on rear legs and perineum, suggestive of predator bites. Histologic lesions included mild vacuolation of neurons and visceral epithelial cells, mild diffuse cerebral edema with minimal neuronal pyknosis, and random, multifocal Wallarian degeneration of spinal cord axons. Affected animals had elevated serum sodium, potassium and chloride levels; other mineral analyses and serum biochemistries were within normal limits. Locoweed-induced depression and inhibition of neuromuscular function coupled with water deprivation due to predation pressure allowed development of neurologic disease and hypernatremia.


Subject(s)
Fabaceae/poisoning , Goat Diseases/etiology , Nervous System Diseases/chemically induced , Water Deprivation , Animals , Fabaceae/chemistry , Goats , Hypernatremia/etiology , Hypernatremia/veterinary , Nervous System Diseases/veterinary , Plants, Edible
SELECTION OF CITATIONS
SEARCH DETAIL
...