Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 54(6): 719-24, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14681881

ABSTRACT

Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is the second anterior horn cell disease in infants in which the genetic defect has been defined. SMARD1 results from mutations in the gene encoding the immunoglobulin micro-binding protein 2 (IGHMBP2) on chromosome 11q13. Our aim was to review the clinical features of 29 infants affected with SMARD1 and report on 26 novel IGHMBP2 mutations. Intrauterine growth retardation, weak cry, and foot deformities were the earliest symptoms of SMARD1. Most patients presented at the age of 1 to 6 months with respiratory distress due to diaphragmatic paralysis and progressive muscle weakness with predominantly distal lower limb muscle involvement. Sensory and autonomic nerves are also affected. Because of the poor prognosis, there is a demand for prenatal diagnosis, and clear diagnostic criteria for infantile SMARD1 are needed. The diagnosis of SMARD1 should be considered in infants with non-5q spinal muscular atrophy, neuropathy, and muscle weakness and/or respiratory distress of unclear cause. Furthermore, consanguineous parents of a child with sudden infant death syndrome should be examined for IGHMBP2 mutations.


Subject(s)
Carrier Proteins/genetics , DNA-Binding Proteins , Respiratory Distress Syndrome, Newborn/complications , Respiratory Distress Syndrome, Newborn/genetics , Spinal Muscular Atrophies of Childhood/complications , Spinal Muscular Atrophies of Childhood/genetics , Transcription Factors , Female , Humans , Infant , Infant, Newborn , Male , Mutation , Respiratory Distress Syndrome, Newborn/physiopathology , Spinal Muscular Atrophies of Childhood/physiopathology
2.
Nat Genet ; 35(2): 185-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14517542

ABSTRACT

Congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome (OMIM 604168) is an autosomal recessive developmental disorder that occurs in an endogamous group of Vlax Roma (Gypsies; refs. 1-3). We previously localized the gene associated with CCFDN to 18qter, where a conserved haplotype suggested a single founder mutation. In this study, we used recombination mapping to refine the gene position to a 155-kb critical interval. During haplotype analysis, we found that the non-transmitted chromosomes of some unaffected parents carried the conserved haplotype associated with the disease. Assuming such parents to be completely homozygous across the critical interval except with respect to the disease-causing mutation, we developed a new 'not quite identical by descent' (NQIBD) approach, which allowed us to identify the mutation causing the disease by sequencing DNA from a single unaffected homozygous parent. We show that CCFDN is caused by a single-nucleotide substitution in an antisense Alu element in intron 6 of CTDP1 (encoding the protein phosphatase FCP1, an essential component of the eukaryotic transcription machinery), resulting in a rare mechanism of aberrant splicing and an Alu insertion in the processed mRNA. CCFDN thus joins the group of 'transcription syndromes' and is the first 'purely' transcriptional defect identified that affects polymerase II-mediated gene expression.


Subject(s)
Cataract/genetics , Chromosomes, Human, Pair 18 , Face/abnormalities , Nervous System Diseases/genetics , Phosphoprotein Phosphatases/genetics , RNA Polymerase II/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Cataract/congenital , Chromosome Mapping , Conserved Sequence , Genes, Recessive , Humans , Introns , Molecular Sequence Data , Phosphoprotein Phosphatases/metabolism , Point Mutation , Polymerase Chain Reaction , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Roma/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...