Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 165: 254-264, 2021 03.
Article in English | MEDLINE | ID: mdl-33515755

ABSTRACT

Human serum albumin (HSA) contains 17 disulfides and only one reduced cysteine, Cys34, which can be oxidized to a relatively stable sulfenic acid (HSA-SOH). This derivative has been previously detected and quantified. However, its properties are poorly understood. Herein, HSA-SOH formation from the exposure of HSA to hydrogen peroxide was confirmed using the sulfenic acid probe bicyclo [6.1.0]nonyne-biotin (BCN-Bio1), and by direct detection by whole protein mass spectrometry. The decay pathways of HSA-SOH were studied. HSA-SOH reacted with a thiol leading to the formation of a mixed disulfide. The reaction occurred through a concerted or direct displacement mechanism (SN2) with the thiolate (RS-) as nucleophile towards HSA-SOH. The net charge of the thiolate affected the value of the rate constant. In the presence of hydrogen peroxide, HSA-SOH was further oxidized to sulfinic acid (HSA-SO2H) and sulfonic acid (HSA-SO3H). The rate constants of these reactions were estimated. Lastly, HSA-SOH spontaneously decayed in solution. Mass spectrometry experiments suggested that the decay product is a sulfenylamide (HSA-SN(R')R″). Chromatofocusing analysis showed that the overoxidation with hydrogen peroxide predominates at alkaline pH whereas the spontaneous decay predominates at acidic pH. The present findings provide insights into the reactivity and fate of the sulfenic acid in albumin, which are also of relevance to numerous sulfenic acid-mediated processes in redox biology and catalysis.


Subject(s)
Sulfenic Acids , Sulfhydryl Compounds , Cysteine , Humans , Oxidation-Reduction , Serum Albumin/metabolism , Serum Albumin, Human
2.
PLoS One ; 15(10): e0240580, 2020.
Article in English | MEDLINE | ID: mdl-33045024

ABSTRACT

Human serum albumin presents in its primary structure only one free cysteine (Cys34) which constitutes the most abundant thiol of plasma. An antioxidant role can be attributed to this thiol, which is located in domain I of the protein. Herein we expressed domain I as a secretion protein using the yeast Pichia pastoris. In the initial step of ammonium sulfate precipitation, a brown pigment co-precipitated with domain I. Three chromatographic methods were evaluated, aiming to purify domain I from the pigment and other contaminants. Purification was achieved by cation exchange chromatography. The protein behaved as a non-covalent dimer. The primary sequence of domain I and the possibility of reducing Cys34 to the thiol state while avoiding the reduction of internal disulfides were confirmed by mass spectrometry. The reactivity of the thiol towards the disulfide 5,5´-dithiobis(2-nitrobenzoate) was studied and compared to that of full-length albumin. A ~24-fold increase in the rate constant was observed for domain I with respect to the entire protein. These results open the door to further characterization of the Cys34 thiol and its oxidized derivatives.


Subject(s)
Antioxidants/chemistry , Cysteine/genetics , Serum Albumin, Human/genetics , Sulfhydryl Compounds/chemistry , Chromatography, Ion Exchange , Cysteine/chemistry , Gene Expression/genetics , Humans , Protein Domains/genetics , Protein Multimerization , Saccharomycetales/genetics , Serum Albumin, Human/chemistry
3.
Nitric Oxide ; 2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29578058

ABSTRACT

Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent ß-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...