Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Herz ; 25(6): 589-99, 2000 Sep.
Article in German | MEDLINE | ID: mdl-11076317

ABSTRACT

Currently available approaches for treating human coronary heart disease aim to relieve symptoms and the risk of myocardial infarction either by reducing myocardial oxygen demand, preventing further disease progression, restoring coronary blood flow pharmacologically or mechanically, or bypassing the stenotic lesions and obstructed coronary artery segments. Gene therapy, especially using angiogenic growth factors, has emerged recently as a potential new treatment for cardiovascular disease. Following extensive experimental research on angiogenic growth factors, the first clinical studies on patients with coronary heart disease and peripheral vascular lesions have been performed. The polypeptides fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) appear to be particularly effective in initiating neovascularization (neoangiogenesis) in hypoxic or ischemic tissues. The first clinical study on patients with coronary heart disease treated by local intramyocardial injection of FGF-1 showed a 3-fold increase of capillary density mediated by the growth factor. Also, angiogenic growth factor injection intramyocardially as sole therapy for end-stage coronary disease showed an improvement of myocardial perfusion in the target areas as well as a reduction of symptoms and an increase in working capacity. Angiogenic therapy of the human myocardium introduces a new modality of treatment for coronary heart disease in terms of regulation of blood vessel growth. Beyond drug therapy, angioplasty and bypass surgery, this new approach may evolve into a fourth principle of treatment of atherosclerotic cardiovascular disease.


Subject(s)
Angiogenesis Inducing Agents/therapeutic use , Coronary Circulation/drug effects , Coronary Disease/drug therapy , Endothelial Growth Factors/therapeutic use , Fibroblast Growth Factors/therapeutic use , Lymphokines/therapeutic use , Neovascularization, Physiologic/drug effects , Animals , Humans , Treatment Outcome , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
2.
Circulation ; 102(11): E73-86, 2000 Sep 12.
Article in English | MEDLINE | ID: mdl-10982554

ABSTRACT

The rapid development of angiogenic growth factor therapy for patients with advanced ischemic heart disease over the last 5 years offers hope of a new treatment strategy based on generation of new blood supply in the diseased heart. However, as the field of therapeutic coronary angiogenesis is maturing from basic and preclinical investigations to clinical trials, many new and presently unresolved issues are coming into focus. These include in-depth understanding of the biology of angiogenesis, selection of appropriate patient populations for clinical trials, choice of therapeutic end points and means of their assessment, choice of therapeutic strategy (gene versus protein delivery), route of administration, and the side effect profile. The present article presents a summary statement of a panel of experts actively working in the field, convened by the Angiogenesis Foundation and the Angiogenesis Research Center during the 72nd meeting of the American Heart Association to define and achieve a consensus on the challenges facing development of therapeutic angiogenesis for coronary disease.


Subject(s)
Clinical Trials as Topic , Coronary Vessels , Heart Diseases/therapy , Neovascularization, Physiologic , Angiogenesis Inducing Agents/adverse effects , Angiogenesis Inducing Agents/genetics , Angiogenesis Inducing Agents/therapeutic use , Animals , Coronary Angiography , Endothelial Growth Factors/adverse effects , Endothelial Growth Factors/genetics , Endothelial Growth Factors/therapeutic use , Fibroblast Growth Factor 2/adverse effects , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/therapeutic use , Genetic Therapy/adverse effects , Heart Diseases/diagnostic imaging , Humans , Lymphokines/adverse effects , Lymphokines/genetics , Lymphokines/therapeutic use , Magnetic Resonance Imaging , Patient Selection , Tomography, Emission-Computed , Tomography, Emission-Computed, Single-Photon , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
3.
BioDrugs ; 11(5): 301-8, 1999 May.
Article in English | MEDLINE | ID: mdl-18031140

ABSTRACT

Currently available approaches for treating human coronary heart disease aim to relieve symptoms and the risk of myocardial infarction by reducing myocardial oxygen demand (drugs), preventing further disease progression (drugs), restoring coronary blood flow either pharmacologically (thrombolysis) or mechanically (angioplasty), or bypassing the stenotic lesions and obstructed coronary artery segments (surgery). Direct gene therapy, as well as gene-derived therapy, especially by angiogenic growth factors, is emerging as a potential new treatment for cardiovascular disease. After extensive experimental research on angiogenic growth factors, the first clinical studies on patients with coronary heart disease or peripheral vascular lesions are being performed. The polypeptides fibroblast growth factor (FGF) and vascular endothelial growth factor seem to be effective in initiating neovascularisation (neo-angiogenesis) in hypoxic or ischaemic tissues. The first clinical study on patients with coronary heart disease treated by local injection of FGF-1 into the compromised underperfused myocardial tissue showed a 3-fold increase of capillary density mediated by the growth factor. Angiogenic therapy of the human myocardium introduces a new modality of treatment for coronary heart disease in terms of regulation of blood vessel growth. Beyond drug therapy, angioplasty and bypass surgery, this therapy may evolve to be a fourth principle of treatment of atherosclerotic cardiovascular disease.

4.
Expert Opin Investig Drugs ; 7(12): 2011-5, 1998 Dec.
Article in English | MEDLINE | ID: mdl-15991943

ABSTRACT

Currently available approaches for treating human coronary heart disease aim to relieve symptoms and the risk of myocardial infarction either by reducing myocardial oxygen demand, preventing further disease progression, restoring coronary blood flow pharmacologically or mechanically, or bypassing the stenotic lesions and obstructed coronary artery segments. Gene therapy, especially using angiogenic growth factors, has emerged recently as a potential new treatment for cardiovascular disease. Following extensive experimental research on angiogenic growth factors, the first clinical studies on patients with coronary heart disease and peripheral vascular lesions have been performed. The polypeptides fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) appear to be particularly effective in initiating neovascularisation (neo-angiogenesis) in hypoxic or ischaemic tissues. The first clinical study on patients with coronary heart disease treated by local intramyocardial injection of FGF-1 showed a 3-fold increase of capillary density mediated by the growth factor. Angiogenic therapy of the human myocardium introduces a new modality of treatment for coronary heart disease in terms of regulation of blood vessel growth. Beyond drug therapy, angioplasty and bypass surgery, this new approach may evolve into a fourth principle of treatment of atherosclerotic cardiovascular disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...