Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Cell Rep ; 31(8): 107676, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32460018

ABSTRACT

The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells. Here, we combine DNase I hypersensitivity, histone modification, and transcriptional profiling to show that SMARCA4 dramatically increases both the number and magnitude of accessible chromatin sites genome-wide, chiefly by unmasking sites of low regulatory factor occupancy. By contrast, transcriptional changes are concentrated within well-demarcated remodeling domains wherein expression of specific genes is gated by both distal element activation and promoter chromatin configuration. Our results provide a perspective on how global chromatin remodeling activity is translated to gene expression via regulatory DNA.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA Helicases/metabolism , DNA/genetics , Gene Expression/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Humans
3.
Nat Methods ; 12(10): 927-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26322838

ABSTRACT

Regulatory regions harbor multiple transcription factor (TF) recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe an approach that exploits the error-prone nature of genome editing-induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function.


Subject(s)
Carrier Proteins/genetics , DNA Footprinting/methods , Genomics/methods , Nuclear Proteins/genetics , Regulatory Sequences, Nucleic Acid , Base Sequence , Binding Sites , DNA Breaks, Double-Stranded , DNA Repair , Enhancer Elements, Genetic , Erythrocytes/physiology , Erythropoiesis , Genome, Human , Humans , Mutation , Repressor Proteins , Transcription Factors/metabolism
4.
Blood ; 126(1): 89-93, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26019277

ABSTRACT

Elevated fetal hemoglobin (HbF) ameliorates the clinical severity of hemoglobinopathies such as ß-thalassemia and sickle cell anemia. Currently, the only curative approach for individuals under chronic transfusion/chelation support therapy is allogeneic stem cell transplantation. However, recent analyses of heritable variations in HbF levels have provided a new therapeutic target for HbF reactivation: the transcriptional repressor BCL11A. Erythroid-specific BCL11A abrogation is now actively being sought as a therapeutic avenue, but the specific impact of such disruption in humans remains to be determined. Although single nucleotide polymorphisms in BCL11A erythroid regulatory elements have been reported, coding mutations are scarcer. It is thus of great interest that patients have recently been described with microdeletions encompassing BCL11A. These patients display neurodevelopmental abnormalities, but whether they show increased HbF has not been reported. We have examined the hematological phenotype, HbF levels, and erythroid BCL11A expression in 3 such patients. Haploinsufficiency of BCL11A induces only partial developmental γ-globin silencing. Of greater interest is that a patient with a downstream deletion exhibits reduced BCL11A expression and increased HbF. Novel erythroid-specific regulatory elements in this region may be required for normal erythroid BCL11A expression, whereas loss of separate elements in the developing brain may explain the neurological phenotype.


Subject(s)
Carrier Proteins/genetics , Chromosome Deletion , Chromosomes, Human, Pair 2 , Fetal Hemoglobin/metabolism , Nervous System Diseases/genetics , Nuclear Proteins/genetics , Adolescent , Child , Female , Humans , Male , Nervous System Diseases/blood , Repressor Proteins , Up-Regulation
5.
Science ; 346(6212): 1007-12, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25411453

ABSTRACT

To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.


Subject(s)
Conserved Sequence , DNA/genetics , Evolution, Molecular , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism , Animals , Base Sequence , Deoxyribonuclease I , Genome, Human , Humans , Mice , Restriction Mapping
6.
Science ; 337(6099): 1190-5, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22955828

ABSTRACT

Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure-related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn's disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.


Subject(s)
DNA/genetics , Disease/genetics , Genetic Variation , Polymorphism, Single Nucleotide , Regulatory Elements, Transcriptional , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism , Alleles , Chromatin/metabolism , Chromatin/ultrastructure , Crohn Disease/genetics , Deoxyribonuclease I/metabolism , Electrocardiography , Fetal Development , Fetus/metabolism , Gene Regulatory Networks , Genome, Human , Genome-Wide Association Study , Humans , Multiple Sclerosis/genetics , Phenotype , Promoter Regions, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics
7.
Blood ; 118(14): 3853-61, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21666053

ABSTRACT

The Mds1 and Evi1 complex locus (Mecom) gives rise to several alternative transcripts implicated in leukemogenesis. However, the contribution that Mecom-derived gene products make to normal hematopoiesis remains largely unexplored. To investigate the role of the upstream transcription start site of Mecom in adult hematopoiesis, we created a mouse model with a lacZ knock-in at this site, termed ME(m1), which eliminates Mds1-Evi1 (ME), the longer, PR-domain-containing isoform produced by the gene (also known as PRDM3). ß-galactosidase-marking studies revealed that, within hematopoietic cells, ME is exclusively expressed in the stem cell compartment. ME deficiency leads to a reduction in the number of HSCs and a complete loss of long-term repopulation capacity, whereas the stem cell compartment is shifted from quiescence to active cycling. Genetic exploration of the relative roles of endogenous ME and EVI1 isoforms revealed that ME preferentially rescues long-term HSC defects. RNA-seq analysis in Lin(-)Sca-1(+)c-Kit(+) cells (LSKs) of ME(m1) documents near complete silencing of Cdkn1c, encoding negative cell-cycle regulator p57-Kip2. Reintroduction of ME into ME(m1) LSKs leads to normalization of both p57-Kip2 expression and growth control. Our results clearly demonstrate a critical role of PR-domain-containing ME in linking p57-kip2 regulation to long-term HSC function.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/cytology , Animals , Cyclin-Dependent Kinase Inhibitor p57/genetics , Exons , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , Gene Knockout Techniques , Hematopoietic Stem Cells/metabolism , Lac Operon , Leukemia/genetics , Leukocytosis/genetics , Mice , Mice, Inbred C57BL , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Thrombocytopenia/genetics
8.
Front Plant Sci ; 2: 79, 2011.
Article in English | MEDLINE | ID: mdl-22645551

ABSTRACT

As sessile organisms, plants are exposed to extreme variations in environmental conditions over the course of their lives. Since plants grow and initiate new organs continuously, they have to modulate the underlying developmental program accordingly to cope with this challenge. At the heart of this extraordinary developmental plasticity are pluripotent stem cells, which are maintained during the entire life-cycle of the plant and that are embedded within dynamic stem cell niches. While the complex regulatory principles of plant stem cell control under artificial constant growth conditions begin to emerge, virtually nothing is known about how this circuit adapts to variations in the environment. In addition to the local feedback system constituted by the homeodomain transcription factor WUSCHEL (WUS) and the CLAVATA signaling cascade in the center of the shoot apical meristem (SAM), the bZIP transcription factor PERIANTHIA (PAN) not only has a broader expression domain in SAM and flowers, but also carries out more diverse functions in meristem maintenance: pan mutants show alterations in environmental response, shoot meristem size, floral organ number, and exhibit severe defects in termination of floral stem cells in an environment dependent fashion. Genetic and genomic analyses indicate that PAN interacts with a plethora of developmental pathways including light, plant hormone, and meristem control systems, suggesting that PAN is as an important regulatory node in the network of plant stem cell control.

9.
Development ; 136(10): 1613-20, 2009 May.
Article in English | MEDLINE | ID: mdl-19395639

ABSTRACT

Flowers develop from floral meristems, which harbor stem cells that support the growth of floral organs. The MADS domain transcription factor AGAMOUS (AG) plays a central role in floral patterning and is required not only for the specification of the two reproductive organ types, but also for termination of stem cell fate. Using a highly conserved cis-regulatory motif as bait, we identified the bZIP transcription factor PERIANTHIA (PAN) as a direct regulator of AG in Arabidopsis. PAN and AG expression domains overlap, and mutations in either the PAN-binding site or PAN itself abolish the activity of a reporter devoid of redundant elements. Whereas under long-day conditions pan mutants have merely altered floral organ number, they display in addition typical AG loss-of-function phenotypes when grown under short days. Consistently, we found reduced AG RNA levels in these flowers. Finally, we show that PAN expression persists in ag mutant flowers, suggesting that PAN and AG are engaged in a negative-feedback loop, which might be mediated by the stem-cell-inducing transcription factor WUSCHEL (WUS).


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Body Patterning/physiology , DNA-Binding Proteins/physiology , Flowers/physiology , Transcription Factors/physiology , AGAMOUS Protein, Arabidopsis/metabolism , Arabidopsis/anatomy & histology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , Feedback, Physiological , Flowers/anatomy & histology , Flowers/metabolism , Gene Expression Regulation, Plant , Homeodomain Proteins/metabolism , Mutation , Stem Cells/cytology , Stem Cells/physiology , Transcription Factors/genetics
10.
Nat Immunol ; 10(3): 289-96, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19169261

ABSTRACT

Despite advances in the identification of lymphoid-restricted progenitor cells, the transcription factors essential for their generation remain to be identified. Here we describe an unexpected function for the myeloid oncogene product Mef2c in lymphoid development. Mef2c deficiency was associated with profound defects in the production of B cells, T cells, natural killer cells and common lymphoid progenitor cells and an enhanced myeloid output. In multipotent progenitors, Mef2c was required for the proper expression of several key lymphoid regulators and restriction of the myeloid fate. Our studies also show that Mef2c was a critical transcriptional target of the transcription factor PU.1 during lymphopoiesis. Thus, Mef2c is a crucial component of the transcriptional network that regulates cell fate 'choice' in multipotent progenitors.


Subject(s)
Lymphoid Progenitor Cells/metabolism , Lymphopoiesis , Myogenic Regulatory Factors/metabolism , Animals , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation, Developmental , Hematopoietic Stem Cell Transplantation , MEF2 Transcription Factors , Mice , Mice, Inbred C57BL , Mice, Knockout , Myogenic Regulatory Factors/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism
11.
Nature ; 451(7182): 1125-9, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18278031

ABSTRACT

MicroRNAs are abundant in animal genomes and have been predicted to have important roles in a broad range of gene expression programmes. Despite this prominence, there is a dearth of functional knowledge regarding individual mammalian microRNAs. Using a loss-of-function allele in mice, we report here that the myeloid-specific microRNA-223 (miR-223) negatively regulates progenitor proliferation and granulocyte differentiation and activation. miR-223 (also called Mirn223) mutant mice have an expanded granulocytic compartment resulting from a cell-autonomous increase in the number of granulocyte progenitors. We show that Mef2c, a transcription factor that promotes myeloid progenitor proliferation, is a target of miR-223, and that genetic ablation of Mef2c suppresses progenitor expansion and corrects the neutrophilic phenotype in miR-223 null mice. In addition, granulocytes lacking miR-223 are hypermature, hypersensitive to activating stimuli and display increased fungicidal activity. As a consequence of this neutrophil hyperactivity, miR-223 mutant mice spontaneously develop inflammatory lung pathology and exhibit exaggerated tissue destruction after endotoxin challenge. Our data support a model in which miR-223 acts as a fine-tuner of granulocyte production and the inflammatory response.


Subject(s)
Cell Proliferation , Granulocytes/cytology , Granulocytes/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Stem Cells/cytology , Alleles , Animals , Cell Differentiation , Gene Deletion , Granulocytes/immunology , Granulocytes/pathology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Lung/pathology , MEF2 Transcription Factors , Mice , Mice, Knockout , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Neutrophils/physiology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...