Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 126(1-4): 577-80, 2007.
Article in English | MEDLINE | ID: mdl-17576654

ABSTRACT

Aircrew is in general receiving a higher average annual dose than other occupationally exposed personnel, and about half of the effective dose is deposited by high-LET neutron secondaries. A recent investigation of the cancer incidence following the atomic bombs at Hiroshima and Nagasaki has put forward the possibility that the relative biological efficiency for neutrons could be underestimated. If so, the effective dose to aircrew from this component would increase and the estimation of this component will become even more important. Different ambient dose equivalent measurement techniques and calculation methods have recently been compared on a dedicated flight. The experimental results are compared with calculations made with the codes EPCARD 3.2 and an updated version of FLUKA and different galactic proton spectra. The aircraft circulated within the target areas at two constant altitudes with a flight route variation of only about 1 degrees in longitude and latitude to reduce the influence from variations in atmospheric and geomagnetic shielding. The instrumentation consisted of tissue-equivalent proportional counters (TEPC) and a silicon diode spectrometer. Measurements were performed for 2 h to reduce the statistical uncertainties in the results. The TEPCs were evaluated either according to single-event analysis techniques or the variance-covariance method. Besides the total ambient dose equivalent, the instruments can be evaluated to reveal the low- and high-LET components. The EPCARD and FLUKA simulations can determine the contribution from each type of particle directly. The ratio between the calculated and the measured average value of the ambient dose equivalent rate was 1.00 +/- 0.08 with all instruments included for EPCARD and 0.97 +/- 0.07 when FLUKA was used. The measured high-LET component and the calculated neutron component are not quite identical, but should be similar. The agreement was always within 20%. The high-LET component contributed with about 57% at N57 E8 and 48% at N42 E12.


Subject(s)
Aircraft , Neutrons , Occupational Exposure/analysis , Radiation Monitoring/methods , Radiation Protection/methods , Relative Biological Effectiveness , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...