Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 191: 114911, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37062133

ABSTRACT

The number of ships installing ballast water management systems (BWMS) has risen steeply since the Ballast Water Management Convention entered into force. Since June 2022, biological testing is required during commissioning to verify compliance with the Convention. Data from 676 tests (from 2019 to 2022) show substantial improvement over time: the failure rate decreased from ~20 % to ~6 %. Notably, nearly all failures occurred in the largest size class of organisms (≥50 µm). Interestingly, proxy measurements suggest that high concentrations of living organisms in uptake water did not cause the failures. Also, failures determined using "indicative" analysis (here, adenosine triphosphate, ATP) were typically not confirmed by "detailed" analysis (microscopy), suggesting that ATP limits are over-precautionary. Finally, discharges containing high levels of Total Residual Oxidants (TRO) decreased over time. These data highlight the need for ongoing testing-focusing at least on organisms ≥50 µm-to minimize environmental risks from organisms transported in ships' ballast water.


Subject(s)
Water Purification , Water , Ships , Oxidants
2.
Environ Technol ; 36(13-16): 2094-104, 2015.
Article in English | MEDLINE | ID: mdl-25704551

ABSTRACT

The spread of aquatic invasive species through ballast water is a major ecological and economical threat. Because of this, the International Maritime Organization (IMO) set limits to the concentrations of organisms allowed in ballast water. To meet these limits, ballast water treatment systems (BWTSs) were developed. The main techniques used for ballast water treatment are ultraviolet (UV) radiation and electrochlorination (EC). In this study, phytoplankton regrowth after treatment was followed for six BWTSs. Natural plankton communities were treated and incubated for 20 days. Growth, photosystem II efficiency and species composition were followed. The three UV systems all showed similar patterns of decrease in phytoplankton concentrations followed by regrowth. The two EC and the chlorine dioxide systems showed comparable results. However, UV- and chlorine-based treatment systems showed significantly different responses. Overall, all BWTSs reduced phytoplankton concentrations to below the IMO limits, which represents a reduced risk of aquatic invasions through ballast water.


Subject(s)
Chlorine Compounds/pharmacology , Disinfection/instrumentation , Oxides/pharmacology , Phytoplankton/drug effects , Phytoplankton/radiation effects , Seawater/microbiology , Water Purification/instrumentation , Chlorine Compounds/chemistry , Disinfection/methods , Equipment Design , Equipment Failure Analysis , Halogenation , Oxides/chemistry , Ships , Ultraviolet Rays , Water Purification/methods
3.
Ecotoxicol Environ Saf ; 96: 93-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23871568

ABSTRACT

The spread of invasive species through ships' ballast water is considered as a major ecological threat to the world's oceans. For that reason, the International Maritime Organization (IMO) has set performance standards for ballast water discharge. Ballast water treatment systems have been developed that employ either UV-radiation or 'active substances' to reduce the concentration of living cells to below the IMOs standards. One such active substance is a chemical mixture known as Peraclean(®) Ocean. The residual of Peraclean(®) Ocean is acetate that might be present at high concentrations in discharged ballast water. In cold coastal waters the breakdown of acetate might be slow, causing a buildup of acetate concentrations in the water if regularly discharged by ships. To study the potential environmental impact, microbial dynamics and acetate degradation were measured in discharge water from a Peraclean(®) Ocean treatment system in illuminated microcosms. In addition, microbial dynamics and acetate degradation were studied at -1, 4, 10, 15 and 25°C in dark microcosms that simulated enclosed ballast water tanks. Acetate breakdown indeed occurred faster at higher temperatures. At 25°C the highest bacteria growth, fastest nutrient and oxygen consumption and highest DOC reduction occurred. On the other hand, at -1°C bacterial growth was strongly delayed, only starting to increase after 12 days. Furthermore, at 25°C the acetate pool was not depleted, probably due to nutrient and oxygen limitation. This means that not all acetate will be broken down in ballast water tanks, even during long voyages in warm waters. In addition, at low temperatures acetate breakdown in ballast water tanks and in discharged water will be extremely slow. Therefore, regular discharge of acetate enriched ballast water in harbors and bays may cause eutrophication and changes in the microbial community, especially in colder regions.


Subject(s)
Acetates/metabolism , Bacteria/drug effects , Environmental Microbiology , Introduced Species , Seawater/microbiology , Ships , Acetates/analysis , Animals , Bacteria/metabolism , Oceans and Seas , Phytoplankton/drug effects , Phytoplankton/growth & development , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...