Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Earth Environ ; 5(1): 376, 2024.
Article in English | MEDLINE | ID: mdl-39015622

ABSTRACT

Quaternary climate changes are driven in part by variations in the distribution and strength of insolation due to orbital parameters. Continental climate variability is well documented for the most recent glacial-interglacial cycles, yet few records extend further back in time. Such records are critically needed to comprehensively assess the entire spectrum of natural climate variability against the backdrop of anthropogenic warming. Here, we apply uranium isotope geochronology to calcite deposits to date groundwater-table changes in Devils Hole cave, Nevada. The deposits record multi-meter groundwater-table fluctuations over the last 750,000 years, reflecting the long-term evolution of hydroclimate in this presently arid region. During periods between glacial or interglacial extremes, the water table responded sensitively to variations in 65°N summer insolation, likely caused by the increasing extent of North American ice sheets during cold period, which steered moisture-laden trajectories towards the southwestern USA. These orbitally-driven hydroclimatic changes are superimposed on a tectonically-driven long-term decline in the regional groundwater table observed prior to 438,000 ± 14,000 years ago.

2.
Commun Earth Environ ; 4(1): 98, 2023.
Article in English | MEDLINE | ID: mdl-38665190

ABSTRACT

Estimating groundwater recharge under various climate conditions is important for predicting future freshwater availability. This is especially true for the water-limited region of the southern Great Basin, USA. To investigate the response of groundwater recharge to different climate states, we calculate the paleo recharge to a groundwater basin in southern Nevada over the last 350,000 years. Our approach combines a groundwater model with paleo-water-table data from Devils Hole cave. The minimum water-table during peak interglacial conditions was more than 1.6 m below modern levels, representing a recharge decline of less than 17% from present-day conditions. During peak glacial conditions, the water-table elevation was at least 9.5 m above modern levels, representing a recharge increase of more than 233-244% compared to present-day conditions. The elevation of the Devils Hole water-table is 3-4 times more sensitive to groundwater recharge during dry interglacial periods, compared to wet glacial periods. This study can serve as a benchmark for understanding long-term effects of past and future climate change on groundwater resources.

3.
Sedimentology ; 69(5): 2099-2130, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36248773

ABSTRACT

Whereas deposits of extremely-rapid, 'catastrophic' mass wastings >105 m3 in volume (for example, the Marocche di Dro rock avalanche in the Southern Alps and the Flims rockslide in the Western Alps) are easily recognized by their sheer mass and blocky surface, the identification of fossil catastrophic mass wastings partly removed by erosion must be based on deposit characteristics. Herein, a 'fossil' (pre-last glacial) rock avalanche, previously interpreted as either a till or debris flow, is described. The deposit, informally called 'Rubble Breccia', is located in the intramontane Campo Imperatore halfgraben that is bounded by a master fault with up to ca 900 m topographic throw. Based on documentation from field to thin section, and by comparative analysis with post-glacial rock avalanches, tills and debris flows, the Rubble Breccia is reinterpreted as a rock avalanche. The Rubble Breccia consists of an extremely-poorly sorted, disordered mixture of angular clasts from sand to block size. Many clasts show fitted subclast boundaries in crackle, jigsaw and mosaic fabrics, as diagnostic of catastrophic mass wasting deposits. Intercalated layers of angular to well-rounded clasts of coarse sand to fine pebble size, and deformed into open to recumbent folds, may represent shear belts folded during terminal avalanche propagation. The clast spectrum of the Rubble Breccia - mainly shallow-water bioclastic limestones, Saccocoma wackestones and other deep-water limestones and dolostones - is derived from the front range along the northern margin of the basin. Calcite cement found within the Rubble Breccia was dated with the U/Th disequilibrium method to 124.25 ± 2.76 ka bp, providing an ante-quam age constraint to the rock avalanche event. Because catastrophic mass wasting is a common erosional process, fossil deposits thereof should be more widespread than have been identified to date, although this may be a consequence of misidentification. The criteria outlined here provide a template to identify fossil catastrophic mass wasting deposits of any age.

4.
Sci Rep ; 11(1): 13885, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230539

ABSTRACT

A speleothem record from the north-eastern Yucatán peninsula (Mexico) provides new insights into the tropical hydro-climate of the Americas between 11,040 and 9520 a BP on up to sub-decadal scale. Despite the complex atmospheric reorganization during the end of the last deglaciation, the dominant internal leading modes of precipitation variability during the late Holocene were also active during the time of record. While multi-decadal variations were not persistent, Mesoamerican precipitation was dominated by changes on the decadal- and centennial scale, which may be attributed to ENSO activity driven by solar forcing. Freshwater fluxes from the remnant Laurentide ice sheet into the Gulf of Mexico and the North Atlantic have additionally modulated the regional evaporation/precipitation balance. In particular, this study underlines the importance of solar activity on tropical and subtropical climate variability through forcing of the tropical Pacific, providing a plausible scenario for observed recurrent droughts on the decadal scale throughout the Holocene.

SELECTION OF CITATIONS
SEARCH DETAIL
...