Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 11: 1365501, 2024.
Article in English | MEDLINE | ID: mdl-38813389

ABSTRACT

The emerging European Health Data Space (EHDS) Regulation opens new prospects for large-scale sharing and re-use of health data. Yet, the proposed regulation suffers from two important limitations: it is designed to benefit the whole population with limited consideration for individuals, and the generation of secondary datasets from heterogeneous, unlinked patient data will remain burdensome. AIDAVA, a Horizon Europe project that started in September 2022, proposes to address both shortcomings by providing patients with an AI-based virtual assistant that maximises automation in the integration and transformation of their health data into an interoperable, longitudinal health record. This personal record can then be used to inform patient-related decisions at the point of care, whether this is the usual point of care or a possible cross-border point of care. The personal record can also be used to generate population datasets for research and policymaking. The proposed solution will enable a much-needed paradigm shift in health data management, implementing a 'curate once at patient level, use many times' approach, primarily for the benefit of patients and their care providers, but also for more efficient generation of high-quality secondary datasets. After 15 months, the project shows promising preliminary results in achieving automation in the integration and transformation of heterogeneous data of each individual patient, once the content of the data sources managed by the data holders has been formally described. Additionally, the conceptualization phase of the project identified a set of recommendations for the development of a patient-centric EHDS, significantly facilitating the generation of data for secondary use.

2.
J Biol Chem ; 285(22): 17089-97, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20351114

ABSTRACT

Living organisms have evolved intricate systems to harvest trace elements from the environment, to control their intracellular levels, and to ensure adequate delivery to the various organs and cellular compartments. Copper is one of these trace elements. It is at the same time essential for life but also highly toxic, not least because it facilitates the generation of reactive oxygen species. In mammals, copper uptake in the intestine and copper delivery into other organs are mediated by the copper importer Ctr1. Drosophila has three Ctr1 homologs: Ctr1A, Ctr1B, and Ctr1C. Earlier work has shown that Ctr1A is an essential gene that is ubiquitously expressed throughout development, whereas Ctr1B is responsible for efficient copper uptake in the intestine. Here, we characterize the function of Ctr1C and show that it functions as a copper importer in the male germline, specifically in maturing spermatocytes and mature sperm. We further demonstrate that loss of Ctr1C in a Ctr1B mutant background results in progressive loss of male fertility that can be rescued by copper supplementation to the food. These findings hint at a link between copper and male fertility, which might also explain the high Ctr1 expression in mature mammalian spermatozoa. In both mammals and Drosophila, the X chromosome is known to be inactivated in the male germline. In accordance with such a scenario, we provide evidence that in Drosophila, the autosomal Ctr1C gene originated as a retrogene copy of the X-linked Ctr1A, thus maintaining copper delivery during male spermatogenesis.


Subject(s)
Cation Transport Proteins/pharmacology , Copper/metabolism , Drosophila Proteins/pharmacology , Fertility/genetics , Animals , Animals, Genetically Modified , Biological Transport , Cation Transport Proteins/genetics , Copper Transport Proteins , Crosses, Genetic , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Gene Expression Regulation , Male , Models, Biological , Reproduction , Spermatocytes/metabolism , Spermatozoa/metabolism , X Chromosome Inactivation
3.
J Biol Inorg Chem ; 15(1): 107-13, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19856191

ABSTRACT

Living cells have to carefully control the intracellular concentration of trace metals, especially of copper, which is at the same time essential but owing to its redox activity can also facilitate generation of reactive oxygen species. Mammals have two related copper transporters, Ctr1 and Ctr2, with Ctr1 playing the major role. The fruit fly Drosophila has three family members, termed Ctr1A, Ctr1B, and Ctr1C. Ctr1A is expressed throughout development, and a null mutation causes lethality at an early stage. Ctr1B ensures efficient copper uptake in the intestinal tract, whereas Ctr1C is mainly expressed in male gonads. Ectopic expression of Ctr1 transporters in Drosophila causes toxic effects due to excessive copper uptake. Here, we compare the effects of human Ctr1 (hCtr1) with those of the Drosophila homologs Ctr1A and Ctr1B in two overexpression assays. Whereas the overexpression of Drosophila Ctr1A and Ctr1B results in strong phenotypes, expression of hCtr1 causes only a very mild phenotype, indicating a low copper-import efficiency in the Drosophila system. However, this can be boosted by coexpressing the human copper chaperone CCS. Surprisingly, hCtr1 complements a lethal Ctr1A mutation at least as well as Ctr1A and Ctr1B transgenes. These findings reveal a high level of conservation between the mammalian and insect Ctr1-type copper importers, and they also demonstrate that the Drosophila Ctr1 proteins are functionally interchangeable.


Subject(s)
Cation Transport Proteins/chemistry , Cation Transport Proteins/metabolism , Conserved Sequence , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila/metabolism , Animals , Cation Transport Proteins/genetics , Copper/metabolism , Copper/toxicity , Copper Transporter 1 , Drosophila/drug effects , Drosophila Proteins/genetics , Female , Gene Expression Regulation , Humans , Male , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation
4.
Cell Cycle ; 8(23): 3848-53, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19887915

ABSTRACT

The Myc transcription factors are amongst the most potent human oncoproteins, and they fulfill essential functions during normal development. Myc heterodimerizes with a protein called Max, and it has been widely assumed that all of Myc's activities depend on this association with Max. Recent evidence calls this view into question, as Myc proteins have been shown to retain considerable biological activity when not bound to Max. The molecular nature of this Max-independent Myc activity is likely to be manifold; one aspect we have recently found not to require Max is Myc's ability to activate RNA polymerase III-dependent transcription. The discovery of these Max-independent functions changes our understanding of basic Myc biology and it may affect pharmaceutical approaches to inhibiting Myc activity.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Drosophila Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Apoptosis , Drosophila melanogaster/metabolism , Humans , Proto-Oncogene Proteins c-myc/physiology , RNA Polymerase III/metabolism
5.
Nat Genet ; 40(9): 1084-91, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19165923

ABSTRACT

Myc proteins are powerful proto-oncoproteins and important promoters of growth and proliferation during normal development. They are thought to exercise their effects upon binding to their partner protein Max, and their activities are largely antagonized by complexes of Max with Mnt or an Mxd family protein. Although the biological functions of Myc, Mxd and Mnt have been intensively studied, comparatively little is known about the in vivo role of Max. Here we generate Max loss-of-function and reduction-of-function mutations in Drosophila melanogaster to address the contribution of Max to Myc-dependent growth control. We find that many biological activities of Myc do not, or only partly, require the association with Max--for example, the control of endoreplication and cell competition-and that a Myc mutant that does not interact with Max retains substantial biological activity. We further show that Myc can control RNA polymerase III independently of Max, which explains some of Myc's observed biological activities. These studies show the ability of Myc to function independently of Max in vivo and thus change the current model of Max network function.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Proto-Oncogene Proteins c-myc/physiology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Drosophila Proteins/genetics , Gene Expression Regulation, Neoplastic , Metamorphosis, Biological , Phenotype , RNA Polymerase III/metabolism , Repressor Proteins/physiology , Transgenes , Wings, Animal
6.
Mol Cell Biol ; 25(9): 3401-10, 2005 May.
Article in English | MEDLINE | ID: mdl-15831447

ABSTRACT

Myc is a transcription factor with diverse biological effects ranging from the control of cellular proliferation and growth to the induction of apoptosis. Here we present a comprehensive analysis of the transcriptional targets of the sole Myc ortholog in Drosophila melanogaster, dMyc. We show that the genes that are down-regulated in response to dmyc inhibition are largely identical to those that are up-regulated after dMyc overexpression and that many of them play a role in growth control. The promoter regions of these targets are characterized by the presence of the E-box sequence CACGTG, a known dMyc binding site. Surprisingly, a large subgroup of (functionally related) dMyc targets contains a single E-box located within the first 100 nucleotides after the transcription start site. The relevance of this E-box and its position was confirmed by a mutational analysis of a selected dMyc target and by the observation of its evolutionary conservation in a different Drosophila species, Drosophila pseudoobscura. These observations raise the possibility that a subset of Myc targets share a distinct regulatory mechanism.


Subject(s)
DNA-Binding Proteins/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , E-Box Elements/genetics , Gene Expression Regulation/genetics , Genes, Insect/genetics , Transcription Factors/physiology , Animals , Base Sequence , Conserved Sequence , DNA Mutational Analysis , Down-Regulation , Drosophila melanogaster/physiology , E-Box Elements/physiology , Gene Expression Regulation/physiology , Genome , Promoter Regions, Genetic/genetics , Transcription Initiation Site , Transcription, Genetic , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...