Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8330, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594287

ABSTRACT

Predicted climate warming and prolonged droughts pose a threat to the soil structure as organic carbon losses weaken the stability of soil aggregates. Well-structured soils are important for storage and movement of water, solutes, and air, the development of plant roots, as habitat for soil organisms, and the microbial activity. Structural stability is measured in terms of hydro-mechanical properties. This study compares effects of amorphous silica with those of organic carbon on stability parameters during drying of aggregates from relatively finer- and coarser-textured soils. Silica amendment enhanced the positive effect of organic carbon on structural stability in terms of the tensile strength. Synergistic effects between silica and organic carbon in soil colloids appear to dynamically alter aggregate density and friability (i.e., ability to crumble) during drying. Silica together with organic carbon could help soil management to reduce negative effects of predicted prolonged droughts on soil structure and stability.

2.
Plants (Basel) ; 12(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446968

ABSTRACT

For the majority of higher plants, silicon (Si) is considered a beneficial element because of the various favorable effects of Si accumulation in plants that have been revealed, including the alleviation of metal(loid) toxicity. The accumulation of non-degradable metal(loid)s in the environment strongly increased in the last decades by intensified industrial and agricultural production with negative consequences for the environment and human health. Phytoremediation, i.e., the use of plants to extract and remove elemental pollutants from contaminated soils, has been commonly used for the restoration of metal(loid)-contaminated sites. In our viewpoint article, we briefly summarize the current knowledge of Si-mediated alleviation of metal(loid) toxicity in plants and the potential role of Si in the phytoremediation of soils contaminated with metal(loid)s. In this context, a special focus is on metal(loid) accumulation in (soil) phytoliths, i.e., relatively stable silica structures formed in plants. The accumulation of metal(loid)s in phytoliths might offer a promising pathway for the long-term sequestration of metal(loid)s in soils. As specific phytoliths might also represent an important carbon sink in soils, phytoliths might be a silver bullet in the mitigation of global change. Thus, the time is now to combine Si/phytolith and phytoremediation research. This will help us to merge the positive effects of Si accumulation in plants with the advantages of phytoremediation, which represents an economically feasible and environmentally friendly way to restore metal(loid)-contaminated sites.

3.
Chemosphere ; 335: 139087, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37263508

ABSTRACT

Arctic permafrost soils store large amounts of organic carbon and nutrients. With deepening of the perennial thawing upper active layer due to rising temperatures in the Arctic, not only the mobility of organic matter (OM), but also those of elements like silicon (Si) or calcium (Ca) may increase. It is known that major elements like Si and Ca can affect mineralization rates of OM, consequently influencing the carbon cycle. But only little is known about the interactions of Si and Ca with inorganic nutrients like iron (Fe) or potentially toxic elements like aluminum (Al) in Artic soils. In this study, we analyzed the effect of Si and Ca fertilization in laboratory incubation experiments with soil samples from several Arctic regions. Our results show a significant increase in Fe and Al mobility (Mehlich-3 extractable) after increasing Si. Using high resolution X-ray microscopy (STXM/NEXAFS), we show that Si promotes Fe(II) phases and by this increases Fe mobility. Al mobility was increased for acidic and neutral pH soils but decreased for alkaline soils after increasing Si. Furthermore, we show a decreased Al mobility after increasing Ca, independent on the original pH values and the OM content of the soils. These results demonstrate the importance of interactions between Si and Ca on one hand and Fe and Al mobility on the other hand for Arctic soils.


Subject(s)
Iron , Soil , Iron/chemistry , Soil/chemistry , Calcium , Aluminum , Silicon , Arctic Regions , Calcium, Dietary
4.
Graefes Arch Clin Exp Ophthalmol ; 261(9): 2593-2602, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37115267

ABSTRACT

BACKGROUND: The quality of the endothelial cell layer is a major criterion for the approval of organ-cultured human donor-corneas for transplantation. We wanted to compare the predictive capacities of initial endothelial density and endothelium cell morphology for the approval of donor corneas for transplantation and for the clinical outcome after transplantation. METHODS: The endothelial density and endothelium morphology in organ culture were examined by semiautomatic assessment of 1031 donor corneas. We performed a statistical analysis for correlations of donor-data and cultivation parameters regarding their predictive capacities for the final approval of donor corneas for transplantation and the clinical outcome of 202 transplanted patients. RESULTS: Corneal endothelium cell density proved to be the only parameter with a certain predictive capacity with regard to the final decision, whether donor corneas are suitable for transplantation - however, the correlation was low (area under the curve [AUC] = 0.655). Endothelial cell morphology lacked any predictive power (AUC = 0.597). The clinical outcome regarding visual acuity seemed to be largely independent from both corneal endothelial cell density and morphology. Sub-analyses on transplanted patients stratified for their diagnoses vindicated these findings. CONCLUSIONS: Higher endothelial density (above a cut-off level of 2000 cells/mm2), as well as better endothelial morphology do not seem to be critical for transplant-corneal functionality in organ culture and up to 2 years after transplantation. Comparable long-term studies on graft survival are recommended to determine, whether the present endothelial density cut-off levels might be too stringent.


Subject(s)
Corneal Transplantation , Endothelium, Corneal , Humans , Cornea , Organ Culture Techniques , Tissue Donors , Cell Count
5.
Sci Rep ; 12(1): 16329, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175535

ABSTRACT

Rice cultivation requires high amounts of phosphorus (P). However, significant amounts of P fertilizer additions may be retained by iron (Fe) oxides and are thus unavailable for plants. At the same time, rice cultivation has a high demand for silicic acid (Si), reducing Si availability after short duration of rice cultivation. By studying a paddy chronosequence with rice cultivation up to 2000 years, we show that Si limitation, observed as early as a few decades of rice cultivation, is limiting P availability along the paddy soils chronosequence. Using near edge X-ray absorption fine structure spectroscopy (NEXAFS) in a scanning transmission (soft) X-ray microscope (STXM) we show release of available P was linked to a Si-induced change in speciation of Fe-phases in soil particles and competition of Si with P for binding sites. Hence, low Si availability is limiting P availability in paddy soils. We propose that proper management of Si availability is a promising tool to improve the P supply of paddy plants.


Subject(s)
Oryza , Phosphorus , Fertilizers , Iron , Oxides , Silicic Acid , Silicon , Soil
6.
Sci Rep ; 12(1): 11708, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810178

ABSTRACT

There is increased interest in the terrestrial silicon cycle in the last decades as its different compounds and species have large implications for ecosystem performance in terms of soil nutrient and water availability, ecosystem productivity as well as ecological aspects such as plant-microbe and plant-animal feedbacks. The currently existing analytical methods are limited. Fourier-transform infrared spectroscopy (FTIR) analysis is suggested being a promising tool to differentiate between the different Si species. We report here on the differentiation of varying Si-species/Si-binding (in synthetic material) using FTIR-analyses. Therefore, we collected FTIR-spectra of five different amorphous silica, Ca-silicate, sodium silicate (all particulate), a water-soluble fraction of amorphous silica and soil affected by volcanic activity and compared their spectra with existing data. A decrease of the internal order of the materials analyzed was indicated by peak broadening of the Si-O-Si absorption band. Peak shifts at this absorption band were induced by larger ions incorporated in the Si-O-Si network. Additionally, short-range ordered aluminosilicates (SROAS) have specific IR absorption bands such as the Si-O-Al band. Hence, SROAS and Si phases containing other ions can be distinguished from pure amorphous Si species using FTIR-analyses.


Subject(s)
Silicic Acid , Silicon Dioxide , Ecosystem , Ions , Silicates/chemistry , Silicon Dioxide/chemistry , Soil , Spectroscopy, Fourier Transform Infrared , Water/chemistry
7.
Sci Rep ; 12(1): 8384, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589948

ABSTRACT

Aluminium, Fe, Si, and dissolved organic C (DOC) accumulate in the subsoil of Podzols after mobilisation in the topsoil. We conducted laboratory experiments with topsoil horizons with progressing degree of podzolisation by irrigation with artificial rainwater at varying intensity and permanence. We monitored the concentrations and distribution of mobilised Al, Fe, Si, and DOC between size fractions (< 1000 Dalton, 1 kDa- < 0.45 µm, and > 0.45 µm). Total eluate concentrations were increased at the onset of the experiments and after the first irrigation interruption, indicating non-equilibrium release. There was no statistical effect of the degree of podzolisation on element concentrations. Release of Al, Fe, and DOC was mostly dominant in the fraction 1 kDa- < 0.45 µm, indicating metals complexed by larger organic molecules and colloids. Silicon released was dominantly monomeric silicic acid < 1 kDa. Particularly with the least podzolised soils, Al and Si concentrations < 1 kDa might have been controlled by short-range ordered aluminosilicates, while their transport in colloidal form was unlikely. Our study pointed to both quantitative and qualitative seasonality of element release during podzolisation, to decoupling of Al and Si release regarding size, and to different minerals that control element release as a function of the degree of podzolisation.


Subject(s)
Metals , Soil , Aluminum/analysis , Colloids , Metals/analysis , Minerals
8.
Environ Pollut ; 288: 117738, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34256290

ABSTRACT

Soil and groundwater contamination with potentially toxic elements (PTEs) including cadmium (Cd) and copper (Cu) has become a serious problem for ecosystem functioning. Silicon (Si) may precipitate these metals as silicates, and may also form, at undersaturation of silicates, 'Si-contaminant compounds', i.e. particles of polymerized silica with PTEs incorporated or adsorbed by inner-sphere complexes. While the formation of these compounds in aqueous solution has been proven, their formation in soil remains unclear yet. Therefore, we conducted column experiments with a topsoil horizon artificially contaminated with Cd or Cu solutions (10 mM) in the presence (10 mM) and absence of monomeric Si, and monitored the elemental composition of the eluates during 12 irrigation steps with artificial rainwater by microwave-plasma atomic emission spectrometry, the size and charge of the particles eluted by dynamic light scattering and phase analysis light scattering, and determined the spatial distribution of total and exchangeable Cd and Cu in soil after the experiments. When Si was previously applied to soil, significantly larger particles (up to > 200 nm) in the eluates indicated Si polymerization and formation of Si-contaminant compounds. However, Cd and Cu concentrations were very low (<0.4 µM), pointing to efficient retardation in soil. In any variant, the particles formed were slightly negatively charged (-11 mV). The molar metal:Si ratios in the eluates and significant correlations between the amounts of Si and metals in soil extracted by NH4NO3 pointed to the formation of Si-contaminant compounds, too. More Cu than Cd was retained in soil, and significantly more in the presence of Si, but less Cu than Cd was in exchangeable form. While particularly Cu formed Si-contaminant compounds, which reduced the concentration of Cu ions, the Si-contaminant-compound particles in the eluates remained very small, thus potentially susceptible to particulate export from soil into the groundwater.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Copper/analysis , Ecosystem , Silicon Dioxide , Soil , Soil Pollutants/analysis
9.
Environ Pollut ; 265(Pt B): 115032, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32599331

ABSTRACT

Soil contamination with inorganic contaminants such as lead (Pb), copper (Cu) and cadmium (Cd) is a major environmental issue. Silicon (Si) may reduce the mobility of the contaminants in the environment so that we studied the extent and the mechanisms of the interactions between Pb2+, Cd2+ and Cu2+ and silicic acid during its polymerization. We used tetraethyl orthosilicate as Si source and separately Pb(NO3)2, Cd(NO3)2 or Cu(NO3)2. Selectivity of Si towards the metals was tested in an equimolar solution of all three salts and the polymerizing Si source. Time-dependency of particle growth was examined using dynamic light scattering. Transmission electron microscopy was used for visualizing the particles. We characterized the solid phases by Fourier transform infrared (FTIR) and 29Si nuclear magnetic resonance (NMR) spectroscopy. Polymerized silica bound relative to the initial concentrations (10 mmol L-1) up to 2.1‰ Cd2+, 2‰ Cu2+ and 1.4‰ Pb2+. The FTIR spectra indicated an incorporation of the metals in the polymeric network. 29Si-NMR relaxation experiments showed an accelerating effect of Cu2+ on the 29Si longitudinal relaxation time. It appears that the proportion of the rapidly relaxing components decreases with increasing distance to the surface. This points to a predominant location of Cu centers close to the surface of the Si matrix. Thus, polymerizing silica may contribute to reduced metal mobility in the environment.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Cadmium/analysis , Copper/analysis , Silicon Compounds , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...