Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(33): 16571-16576, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31346088

ABSTRACT

Dravet Syndrome is a severe childhood epileptic disorder caused by haploinsufficiency of the SCN1A gene encoding brain voltage-gated sodium channel NaV1.1. Symptoms include treatment-refractory epilepsy, cognitive impairment, autistic-like behavior, and premature death. The specific loci of NaV1.1 function in the brain that underlie these global deficits remain unknown. Here we specifically deleted Scn1a in the hippocampus using the Cre-Lox method in weanling mice. Local gene deletion caused selective reduction of inhibitory neurotransmission measured in dentate granule cells. Mice with local NaV1.1 reduction had thermally evoked seizures and spatial learning deficits, but they did not have abnormalities of locomotor activity or social interaction. Our results show that local gene deletion in the hippocampus can induce two of the most severe dysfunctions of Dravet Syndrome: Epilepsy and cognitive deficit. Considering these results, the hippocampus may be a potential target for future gene therapy for Dravet Syndrome.


Subject(s)
Cognitive Dysfunction/complications , Epilepsies, Myoclonic/complications , Gene Deletion , Hippocampus/pathology , NAV1.1 Voltage-Gated Sodium Channel/genetics , Seizures/complications , Temperature , Animals , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Conditioning, Classical , Dentate Gyrus/metabolism , Dentate Gyrus/physiopathology , Dependovirus/metabolism , Fear , Hippocampus/physiopathology , Inhibitory Postsynaptic Potentials , Integrases/metabolism , Interpersonal Relations , Memory , Mice , Mice, Inbred C57BL , Neurons/metabolism , Receptors, GABA/metabolism , Seizures/pathology , Seizures/physiopathology , Spatial Learning
2.
Glia ; 64(7): 1170-89, 2016 07.
Article in English | MEDLINE | ID: mdl-27100776

ABSTRACT

Radial glial cells are presumptive neural stem cells (NSCs) in the developing nervous system. The direct requirement of radial glia for the generation of a diverse array of neuronal and glial subtypes, however, has not been tested. We employed two novel transgenic zebrafish lines and endogenous markers of NSCs and radial glia to show for the first time that radial glia are essential for neurogenesis during development. By using the gfap promoter to drive expression of nuclear localized mCherry we discerned two distinct radial glial-derived cell types: a major nestin+/Sox2+ subtype with strong gfap promoter activity and a minor Sox2+ subtype lacking this activity. Fate mapping studies in this line indicate that gfap+ radial glia generate later-born CoSA interneurons, secondary motorneurons, and oligodendroglia. In another transgenic line using the gfap promoter-driven expression of the nitroreductase enzyme, we induced cell autonomous ablation of gfap+ radial glia and observed a reduction in their specific derived lineages, but not Blbp+ and Sox2+/gfap-negative NSCs, which were retained and expanded at later larval stages. Moreover, we provide evidence supporting classical roles of radial glial in axon patterning, blood-brain barrier formation, and locomotion. Our results suggest that gfap+ radial glia represent the major NSC during late neurogenesis for specific lineages, and possess diverse roles to sustain the structure and function of the spinal cord. These new tools will both corroborate the predicted roles of astroglia and reveal novel roles related to development, physiology, and regeneration in the vertebrate nervous system. GLIA 2016;64:1170-1189.


Subject(s)
Glial Fibrillary Acidic Protein/metabolism , Neurogenesis/physiology , Neurons/physiology , Spinal Cord/cytology , Age Factors , Animals , Animals, Genetically Modified , Apoptosis/genetics , Cell Differentiation , Cell Proliferation/genetics , Embryo, Nonmammalian , Embryonic Development/genetics , Glial Fibrillary Acidic Protein/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Locomotion/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Spinal Cord/embryology , Time Factors , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Red Fluorescent Protein
3.
Proc Natl Acad Sci U S A ; 112(1): 268-72, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25535386

ABSTRACT

Huntington's disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical and striatal neurons, as well as morbidity in midlife. Human genetic studies led to the identification of the causative gene, huntingtin. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death. However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has complicated efforts to understand the etiology of this disease, and to date no curative therapeutic exists. To address the general problem of identifying the disease-phenotype contributing genes from a large number of correlative studies, here we develop a synthetic lethal screening methodology for the mammalian central nervous system, called SLIC, for synthetic lethal in the central nervous system. Applying SLIC to the study of Huntington's disease, we identify the age-regulated glutathione peroxidase 6 (Gpx6) gene as a modulator of mutant huntingtin toxicity and show that overexpression of Gpx6 can dramatically alleviate both behavioral and molecular phenotypes associated with a mouse model of Huntington's disease. SLIC can, in principle, be used in the study of any neurodegenerative disease for which a mouse model exists, promising to reveal modulators of neurodegenerative disease in an unbiased fashion, akin to screens in simpler model organisms.


Subject(s)
Central Nervous System/enzymology , Central Nervous System/pathology , Glutathione Peroxidase/metabolism , Huntington Disease/enzymology , Huntington Disease/pathology , Animals , Behavior, Animal , Central Nervous System/physiopathology , Disease Models, Animal , Gene Expression Regulation , Humans , Huntington Disease/genetics , Huntington Disease/physiopathology , Mice , Motor Activity , Neostriatum/metabolism , Neostriatum/pathology , Neostriatum/physiopathology
4.
BMC Biol ; 10: 40, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22559716

ABSTRACT

UNLABELLED: The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. RESULTS: WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil. CONCLUSIONS: Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean.


Subject(s)
Petroleum Pollution/adverse effects , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/embryology , Zebrafish/growth & development , Animals , Cardiovascular System/drug effects , Cardiovascular System/embryology , Cardiovascular System/growth & development , Disasters , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/embryology , Environmental Monitoring , Gulf of Mexico , Head/abnormalities , Head/embryology , Head/growth & development , Models, Animal , Motor Activity , Petroleum/analysis , Water Pollutants, Chemical/analysis , Zebrafish/abnormalities
SELECTION OF CITATIONS
SEARCH DETAIL
...