Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Front Plant Sci ; 10: 746, 2019.
Article in English | MEDLINE | ID: mdl-31244872

ABSTRACT

Iron (Fe) is an essential element to plants, but can be harmful if accumulated to toxic concentrations. Fe toxicity can be a major nutritional disorder in rice (Oryza sativa) when cultivated under waterlogged conditions, as a result of excessive Fe solubilization of in the soil. However, little is known about the basis of Fe toxicity and tolerance at both physiological and molecular level. To identify mechanisms and potential candidate genes for Fe tolerance in rice, we comparatively analyzed the effects of excess Fe on two cultivars with distinct tolerance to Fe toxicity, EPAGRI 108 (tolerant) and BR-IRGA 409 (susceptible). After excess Fe treatment, BR-IRGA 409 plants showed reduced biomass and photosynthetic parameters, compared to EPAGRI 108. EPAGRI 108 plants accumulated lower amounts of Fe in both shoots and roots compared to BR-IRGA 409. We conducted transcriptomic analyses of roots from susceptible and tolerant plants under control and excess Fe conditions. We found 423 up-regulated and 92 down-regulated genes in the susceptible cultivar, and 42 up-regulated and 305 down-regulated genes in the tolerant one. We observed striking differences in root gene expression profiles following exposure to excess Fe: the two cultivars showed no genes regulated in the same way (up or down in both), and 264 genes were oppositely regulated in both cultivars. Plants from the susceptible cultivar showed down-regulation of known Fe uptake-related genes, indicating that plants are actively decreasing Fe acquisition. On the other hand, plants from the tolerant cultivar showed up-regulation of genes involved in root cell wall biosynthesis and lignification. We confirmed that the tolerant cultivar has increased lignification in the outer layers of the cortex and in the vascular bundle compared to the susceptible cultivar, suggesting that the capacity to avoid excessive Fe uptake could rely in root cell wall remodeling. Moreover, we showed that increased lignin concentrations in roots might be linked to Fe tolerance in other rice cultivars, suggesting that a similar mechanism might operate in multiple genotypes. Our results indicate that changes in root cell wall and Fe permeability might be related to Fe toxicity tolerance in rice natural variation.

2.
J Hazard Mater ; 369: 191-198, 2019 05 05.
Article in English | MEDLINE | ID: mdl-30776602

ABSTRACT

Increasing evidence indicates the presence of engineered nanoparticles (ENPs) in sewage sludge derived from wastewater treatment. Land application of sewage sludge is, therefore, considered as an important pathway for ENP transfer to the environment. The aim of this work was to understand the effects of sewage sludge containing nano-TiO2 on plants (tomato) when used as an amendment in agricultural soil. We assessed developmental parameters for the entire plant life cycle along with metabolic and bio-macromolecule changes and titanium accumulation in plants. The results suggest that the sewage sludge amendment containing nano-TiO2 increased plant growth (142% leaf biomass, 102% fruit yield), without causing changes in biochemical responses, except for a 43% decrease in leaf tannin concentration. Changes in elemental concentrations (mainly Fe, B, P, Na, and Mn) of plant stem, leaves and, to a lesser extent fruits were observed. Fourier-transformed infrared analysis showed maximum changes in plant leaves (decrease in tannins and lignins and increase in carbohydrates) but no change in fruits. No significant Ti enrichment was detected in tomato fruits. In conclusion, we evidenced no acute toxicity to plants and no major implication for food safety after one plant life cycle exposure.


Subject(s)
Metal Nanoparticles/chemistry , Sewage , Solanum lycopersicum/growth & development , Tannins/chemistry , Titanium/chemistry , Agriculture , Biomarkers , Biomass , Chlorophyll/chemistry , Life Cycle Stages/drug effects , Solanum lycopersicum/drug effects , Plant Leaves , Soil , Soil Pollutants , Spectrophotometry , Spectroscopy, Fourier Transform Infrared , Synchrotrons , Wastewater , Water Pollutants, Chemical , Water Purification
3.
Genet. mol. biol ; 26(4): 477-497, dec. 2003. ilus, tab
Article in English | LILACS | ID: lil-355294

ABSTRACT

Iron is essential for plants. However, excess iron is toxic, leading to oxidative stress and decreased productivity. Therefore, plants must use finely tuned mechanisms to keep iron homeostasis in each of their organs, tissues, cells and organelles. A few of the genes involved in iron homeostasis in plants have been identified recently, and we used some of their protein sequences as queries to look for corresponding genes in the rice (Oryza sativa) genome. We have assigned possible functions to thirty-nine new rice genes. Together with four previously reported sequences, we analyzed a total of forty-three genes belonging to five known protein families: eighteen YS (Yellow Stripe), two FRO (Fe3+-chelate reductase oxidase), thirteen ZIP (Zinc regulated transporter / Iron regulated transporter Protein), eight NRAMP (Natural Resistance - Associated Macrophage Protein), and two Ferritin proteins. The possible cellular localization and number of potential transmembrane domains were evaluated, and phylogenetic analysis performed for each gene family. Annotation of genomic sequences was performed. The presence and number of homologues in each gene family in rice and Arabidopsis is discussed in light of the established iron acquisition strategies used by each one of these two plants.


Subject(s)
Iron , Oryza/genetics , Genome
SELECTION OF CITATIONS
SEARCH DETAIL
...