Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Front Psychol ; 15: 1375029, 2024.
Article in English | MEDLINE | ID: mdl-38699569

ABSTRACT

Background: The use of mobile exoskeletons as assistive walking devices has the potential to affect the biomechanics of the musculoskeletal system due to their weight and restricted range of motion. This may result in physical and cognitive load for the user. Understanding how lower extremity loading affects cognitive-motor interference is crucial for the design of wearable devices, including powered exoskeletons, and the development of effective training interventions. Objective: This study aims to examine the effects of modified leg mechanics on cognitive-motor interference in dual-task walking. Gait variability, as an indicator of motor control, was analyzed to investigate its relation to cognitive task difficulty and to determine whether lower extremity loading modifies this relationship. Additionally, the impact on the gait pattern, as represented by the mean values of spatio-temporal gait parameters were investigated. Method: Fifteen healthy young adults walked on a treadmill with and without weight cuffs bilaterally attached to their thighs and shanks while performing a visual-verbal Stroop test (simple task) and a serial subtraction task (difficult task). Dependent variables include mean values and variability (coefficients of variation) of step length, step width, stride time and double support time. Additionally, secondary task performance as correct response rates and perceived workload were assessed. Results: Double support time variability decreased during dual-task walking, but not during walking with modified leg mechanics while performing the difficult secondary task. Walking with modified leg mechanics resulted in increased gait variability compared to normal walking, regardless of cognitive load. During walking with modified leg mechanics, step length, step width, and stride time increased, while double support time decreased. The secondary tasks did not affect the gait pattern. Conclusion: The interplay between an external focus of attention and competition for attentional resources may influence the variability of double support time. The findings suggest that walking with modified leg mechanics could increase cognitive-motor interference for healthy young adults in demanding dual-task situations. Therefore, it is important to analyze the underlying mechanisms of cognitive-motor interference in the context of human-exoskeleton interaction.

2.
J Clin Med ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38541761

ABSTRACT

Background: The effectiveness of knee orthoses as part of conservative treatment for patients with medial knee osteoarthritis has not been fully explored. The purpose of this study was to evaluate the effects of a novel semi-rigid knee orthosis on pain, physical activity, and functional capacity. Methods: Pain levels, physical activity, and functional capacity were assessed in 24 participants experiencing symptomatic medial knee osteoarthritis one week before (i.e., pretest) initiating a six-week orthosis intervention and again during the final week of the intervention (i.e., post-test). Results: Night pain, pain during walking, pain during stair climbing, and pain during sitting consistently decreased by 41% to 48% while wearing the knee orthosis. Device-based measured physical activity showed a 20.2-min increase in vigorous physical activity during the post-test, while light and moderate physical activity did not show significant changes. After six weeks of orthosis application, there was a 5% increased distance for the six-minute walk test, and participants reported fewer limitations both in everyday and athletic activities, as well as an enhanced quality of life. Conclusions: These findings highlight the potential effectiveness of a semi-rigid knee orthosis to enhancing functional capacity and quality of life. More extensive and longer clinical trials are needed to improve confidence in these findings and understand their impact on disease progression.

3.
J Oral Rehabil ; 51(6): 1041-1049, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491728

ABSTRACT

BACKGROUND: Jaw clenching improves dynamic reactive balance on an oscillating platform during forward acceleration and is associated with decreased mean sway speed of different body regions. OBJECTIVE: It is suggested that jaw clenching as a concurrent muscle activity facilitates human motor excitability, increasing the neural drive to distal muscles. The underlying mechanism behind this phenomenon was studied based on leg and trunk muscle activity (iEMG) and co-contraction ratio (CCR). METHODS: Forty-eight physically active and healthy adults were assigned to three groups, performing three oral motor tasks (jaw clenching, tongue pressing against the palate or habitual lower jaw position) during a dynamic one-legged stance reactive balance task on an oscillating platform. The iEMG and CCR of posture-relevant muscles and muscle pairs were analysed during platform forward acceleration. RESULTS: Tongue pressing caused an adjustment of co-contraction patterns of distal muscle groups based on changes in biomechanical coupling between the head and trunk during static balancing at the beginning of the experiment. Neither iEMG nor CCR measurement helped detect a general neuromuscular effect of jaw clenching on the dynamic reactive balance. CONCLUSION: The findings might indicate the existence of robust fixed patterns of rapid postural responses during the important initial phases of balance recovery.


Subject(s)
Electromyography , Jaw , Muscle Contraction , Postural Balance , Tongue , Humans , Postural Balance/physiology , Male , Female , Adult , Jaw/physiology , Tongue/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Young Adult , Biomechanical Phenomena/physiology , Healthy Volunteers , Posture/physiology
4.
PLoS One ; 19(2): e0299050, 2024.
Article in English | MEDLINE | ID: mdl-38386649

ABSTRACT

The effects of jaw clenching on balance has been shown under static steady-state conditions but the effects on dynamic steady-state balance have not yet been investigated. On this basis, the research questions were: 1) if jaw clenching improves dynamic steady-state balance; 2) if the effects persist when the jaw clenching task loses its novelty and the increased attention associated with it; 3) if the improved dynamic steady-state balance performance is associated with decreased muscle activity. A total of 48 physically active healthy adults were assigned to three groups differing in intervention (Jaw clenching and balance training (JBT), only balance training (OBT) or the no-training control group (CON)) and attending two measurement points separated by two weeks. A stabilometer was used to assess the dynamic steady-state balance performance in a jaw clenching and non-clenching condition. Dynamic steady-state balance performance was measured by the time at equilibrium (TAE). The activities of tibialis anterior (TA), gastrocnemius medialis (GM), rectus femoris (RF), biceps femoris (BF) and masseter (MA) muscles were recorded by a wireless EMG system. Integrated EMG (iEMG) was calculated to quantify the muscle activities. All groups had better dynamic steady-state balance performance in the jaw clenching condition than non-clenching at T1, and the positive effects persisted at T2 even though the jaw clenching task lost its novelty and attention associated with it after balance training with simultaneous jaw clenching. Independent of the intervention, all groups had better dynamic steady-state balance performances at T2. Moreover, reductions in muscle activities were observed at T2 parallel to the dynamic steady-state balance performance improvement. Previous studies showed that jaw clenching alters balance during upright standing, predictable perturbations when standing on the ground and unpredictable perturbations when standing on an oscillating platform. This study complemented the previous findings by showing positive effects of jaw clenching on dynamic steady-state balance performance.


Subject(s)
Masseter Muscle , Muscle, Skeletal , Adult , Humans , Electromyography , Masseter Muscle/physiology , Muscle Contraction/physiology , Standing Position
5.
Front Sports Act Living ; 5: 1197883, 2023.
Article in English | MEDLINE | ID: mdl-38046934

ABSTRACT

Introduction: Motion analysis can be used to gain information needed for disease diagnosis as well as for the design and evaluation of intervention strategies in patients with hip osteoarthritis (HOA). Thereby, joint kinematics might be of great interest due to their discriminative capacity and accessibility, especially with regard to the growing usage of wearable sensors for motion analysis. So far, no comprehensive literature review on lower limb joint kinematics of patients with HOA exists. Thus, the aim of this systematic review and meta-analysis was to synthesise existing literature on lower body joint kinematics of persons with HOA compared to those of healthy controls during locomotion tasks. Methods: Three databases were searched for studies on pelvis, hip, knee and ankle kinematics in subjects with HOA compared to healthy controls during locomotion tasks. Standardised mean differences were calculated and pooled using a random-effects model. Where possible, subgroup analyses were conducted. Risk of bias was assessed with the Downs and Black checklist. Results and Discussion: A total of 47 reports from 35 individual studies were included in this review. Most studies analysed walking and only a few studies analysed stair walking or turning while walking. Most group differences were found in ipsi- and contralateral three-dimensional hip and sagittal knee angles with reduced ranges of motion in HOA subjects. Differences between subjects with mild to moderate and severe HOA were found, with larger effects in severe HOA subjects. Additionally, stair walking and turning while walking might be promising extensions in clinical gait analysis due to their elevated requirements for joint mobility. Large between-study heterogeneity was observed, and future studies have to clarify the effects of OA severity, laterality, age, gender, study design and movement execution on lower limb joint kinematics. Systematic Review Registration: PROSPERO (CRD42021238237).

6.
Sci Rep ; 13(1): 16901, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803010

ABSTRACT

The transitions between sitting and standing have a high physical and coordination demand, frequently causing falls in older individuals. Rollators, or four-wheeled walkers, are often prescribed to reduce lower-limb load and to improve balance but have been found a fall risk. This study investigated how rollator support affects sit-to-stand and stand-to-sit movements. Twenty young participants stood up and sat down under three handle support conditions (unassisted, light touch, and full support). As increasing task demands may affect coordination, a challenging floor condition (balance pads) was included. Full-body kinematics and ground reaction forces were recorded, reduced in dimensionality by principal component analyses, and clustered by k-means into movement strategies. Rollator support caused the participants to switch strategies, especially when their balance was challenged, but did not lead to support-specific strategies, i.e., clusters that only comprise light touch or full support trials. Three strategies for sit-to-stand were found: forward leaning, hybrid, and vertical rise; two in the challenging condition (exaggerated forward and forward leaning). For stand-to-sit, three strategies were found: backward lowering, hybrid, and vertical lowering; two in the challenging condition (exaggerated forward and forward leaning). Hence, young individuals adjust their strategy selection to different conditions. Future studies may apply this methodology to older individuals to recommend safe strategies and ultimately reduce falls.


Subject(s)
Posture , Sitting Position , Humans , Aged , Movement , Lower Extremity , Standing Position , Biomechanical Phenomena
7.
Front Neurol ; 14: 1140712, 2023.
Article in English | MEDLINE | ID: mdl-37426440

ABSTRACT

Introduction: Good balance is essential for human daily life as it may help to improve the quality of life and reduce the risk of falls and associated injuries. The influence of jaw clenching on balance control has been shown under static and dynamic conditions. Nevertheless, it has not yet been investigated whether the effects are mainly associated with the dual-task situation or are caused by jaw clenching itself. Therefore, this study investigated the effects of jaw clenching on dynamic reactive balance task performance prior to and after 1 week of jaw clenching training. It was hypothesized that jaw clenching has stabilizing effects resulting in a better dynamic reactive balance performance, and these effects are not related to dual-task benefits. Methods: A total of 48 physically active and healthy adults (20 women and 28 men) were distributed into three groups, one habitual control group (HAB) and two jaw clenching groups (JAW and INT) that had to clench their jaws during the balance tasks at T1 and T2. One of those two groups, the INT group, additionally practiced the jaw clenching task for 1 week, making it familiar and implicit at T2. The HAB group did not receive any instruction regarding jaw clenching condition. Dynamic reactive balance was assessed using an oscillating platform perturbed in one of four directions in a randomized order. Kinematic and electromyographic (EMG) data were collected using a 3D motion capture system and a wireless EMG system, respectively. Dynamic reactive balance was operationalized by the damping ratio. Furthermore, the range of motion of the center of mass (CoM) in perturbation direction (RoMCoM_AP or RoMCoM_ML), as well as the velocity of CoM (VCoM) in 3D, were analyzed. The mean activity of the muscles relevant to the perturbation direction was calculated to investigate reflex activities. Results: The results revealed that jaw clenching had no significant effects on dynamic reactive balance performance or CoM kinematics in any of these three groups, and the automation of jaw clenching in the INT group did not result in a significant change either. However, high learning effects, as revealed by the higher damping ratio values and lower VCoM at T2, were detected for the dynamic reactive balance task even without any deliberate balance training in the intervention phase. In the case of backward perturbation of the platform, the soleus activity in a short latency response phase increased for the JAW group, whereas it decreased for HAB and INT after the intervention. In the case of forward acceleration of the platform, JAW and INT showed a higher tibialis anterior muscle activity level in the medium latency response phase compared to HAB at T1. Discussion: Based on these findings, it can be suggested that jaw clenching may lead to some changes in reflex activities. However, the effects are limited to anterior-posterior perturbations of the platform. Nevertheless, high learning effects may have overall overweighed the effects related to jaw clenching. Further studies with balance tasks leading to less learning effects are needed to understand the altered adaptations to a dynamic reactive balance task related to simultaneous jaw clenching. Analysis of muscle coordination (e.g., muscle synergies), instead of individual muscles, as well as other experimental designs in which the information from other sources are reduced (e.g., closed eyes), may also help to reveal jaw clenching effects.

8.
Front Robot AI ; 10: 1155143, 2023.
Article in English | MEDLINE | ID: mdl-37520939

ABSTRACT

Humans are increasingly coming into direct physical contact with robots in the context of object handovers. The technical development of robots is progressing so that handovers can be better adapted to humans. An important criterion for successful handovers between robots and humans is the predictability of the robot for the human. The better humans can anticipate the robot's actions, the better they can adapt to them and thus achieve smoother handovers. In the context of this work, it was investigated whether a highly adaptive transport method of the object, adapted to the human hand, leads to better handovers than a non-adaptive transport method with a predefined target position. To ensure robust handovers at high repetition rates, a Franka Panda robotic arm with a gripper equipped with an Intel RealSense camera and capacitive proximity sensors in the gripper was used. To investigate the handover behavior, a study was conducted with n = 40 subjects, each performing 40 handovers in four consecutive runs. The dependent variables examined are physical handover time, early handover intervention before the robot reaches its target position, and subjects' subjective ratings. The adaptive transport method does not result in significantly higher mean physical handover times than the non-adaptive transport method. The non-adaptive transport method does not lead to a significantly earlier handover intervention in the course of the runs than the adaptive transport method. Trust in the robot and the perception of safety are rated significantly lower for the adaptive transport method than for the non-adaptive transport method. The physical handover time decreases significantly for both transport methods within the first two runs. For both transport methods, the percentage of handovers with a physical handover time between 0.1 and 0.2 s increases sharply, while the percentage of handovers with a physical handover time of >0.5 s decreases sharply. The results can be explained by theories of motor learning. From the experience of this study, an increased understanding of motor learning and adaptation in the context of human-robot interaction can be of great benefit for further technical development in robotics and for the industrial use of robots.

10.
Sensors (Basel) ; 23(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36991743

ABSTRACT

Exoskeletons are a promising tool to support individuals with a decreased level of motor performance. Due to their built-in sensors, exoskeletons offer the possibility of continuously recording and assessing user data, for example, related to motor performance. The aim of this article is to provide an overview of studies that rely on using exoskeletons to measure motor performance. Therefore, we conducted a systematic literature review, following the PRISMA Statement guidelines. A total of 49 studies using lower limb exoskeletons for the assessment of human motor performance were included. Of these, 19 studies were validity studies, and six were reliability studies. We found 33 different exoskeletons; seven can be considered stationary, and 26 were mobile exoskeletons. The majority of the studies measured parameters such as range of motion, muscle strength, gait parameters, spasticity, and proprioception. We conclude that exoskeletons can be used to measure a wide range of motor performance parameters through built-in sensors, and seem to be more objective and specific than manual test procedures. However, since these parameters are usually estimated from built-in sensor data, the quality and specificity of an exoskeleton to assess certain motor performance parameters must be examined before an exoskeleton can be used, for example, in a research or clinical setting.


Subject(s)
Exoskeleton Device , Gait Disorders, Neurologic , Humans , Reproducibility of Results , Lower Extremity , Gait
11.
Bioengineering (Basel) ; 9(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36354527

ABSTRACT

Running has become increasingly popular worldwide. Among runners, there exists a wide range of expertise levels. Investigating the differences between runners at two extreme levels, that is novices and experts, is crucial to understand the changes that occur as a result of multiple years of training. Vertical oscillation of center of mass (CoM), stride frequency normalized to the leg length, and duty factor, which describes the step time relative to the flight time, are key biomechanical parameters that have been shown to be closely related to the running economy and are used to characterize the running style. The variability characteristics of these parameters may reveal valuable information concerning the control of human locomotion. However, how the expertise level and running speed affect the variability of these key biomechanical parameters has not yet been investigated. The aim of this study was to analyze the effects of expertise level (novice vs. expert) and running speed (10 km/h vs. 15 km/h) on these parameters and their variability. It was hypothesized that expert runners would have lower vertical oscillation of CoM, normalized stride frequency, and duty factor and show less variability in these parameters. The parameters' variability was operationalized by the coefficient of variation. The mean values and variability of these key biomechanical parameters according to expertise level and running speed were compared with rmANOVAs. The results showed that the experts had a lower duty factor and less variable vertical oscillation of CoM and normalized stride frequency, independently of the running speed. At a higher running speed, the variability of vertical oscillation of CoM was higher, whereas that of normalized stride frequency and duty factor did not change significantly. To the best of our knowledge, this is the first study analyzing the effects of expertise level and running speed on the variability of key biomechanical parameters.

12.
Front Bioeng Biotechnol ; 10: 888775, 2022.
Article in English | MEDLINE | ID: mdl-35898647

ABSTRACT

Hip Osteoarthritis (HOA) is a common joint disease with serious impact on the quality of life of the affected persons. Additionally, persons with HOA often show alterations in gait biomechanics. Developing effective conservative treatment strategies is of paramount importance, as joint replacement is only indicated for end-stage HOA. In contrast to knee osteoarthritis, little is known about the effectiveness of hip bracing for the management of HOA. Studies analysing mechanically unloading hip braces partly showed beneficial results. However, methodological limitations of these studies, such as small sample sizes or lack of control groups, limit the applicability of the results. Additionally, mechanically unloading braces might impose restrictions on motion and comfort and thus, might not be suitable for people with only mild or moderate symptoms. The aim of this study was to comprehensively quantify the effects of unilateral HOA as well as functional hip bracing on gait biomechanics, pain, proprioception and functional capacity in people with mild to moderate HOA. Hip and pelvis biomechanics during walking were analysed in 21 subjects with mild to moderate HOA under three bracing conditions: unbraced, immediately after brace application and after 1 week of brace usage. Additionally, pain, hip proprioception and functional capacity were assessed. A matched group of 21 healthy subjects was included as reference. Kinematic and kinetic data were collected using a 16-camera infrared motion capturing system and two force plates. Visual analogue scales, an angle reproduction test and a 6-min walking test were applied to measure pain, hip proprioception and functional capacity, respectively. Subjects with HOA walked slower, with reduced step length, sagittal hip range of motion and peak extension angle and had a reduced functional capacity. After 1 week of brace application step length, walking speed and functional capacity were significantly increased. Additionally, pain perception was significantly lower in the intervention period. These results encourage the application of functional hip braces in the management of mild to moderate HOA. However, as key parameters of HOA gait such as a reduced peak extension angle remained unchanged, the underlying mechanisms remain partly unclear and have to be considered in the future.

13.
Biology (Basel) ; 11(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35741462

ABSTRACT

Understanding the effects of fatigue is a central issue in the context of endurance sports. Given the popularity of running, there are numerous novices among runners. Therefore, understanding the effects of fatigue in novice runners is an important issue. Various studies have drawn conclusions about the control of certain variables by analyzing motor variability. One variable that plays a crucial role during running is the center of mass (CoM), as it reflects the movement of the whole body in a simplified way. Therefore, the aim of this study was to analyze the effects of fatigue on the motor variability structure that stabilizes the CoM trajectory in novice runners. To do so, the uncontrolled manifold approach was applied to a 3D whole-body model using the CoM as the result variable. It was found that motor variability increased with fatigue (UCMꓕ). However, the UCMRatio did not change. This indicates that the control of the CoM decreased, whereas the stability was not affected. The decreases in control were correlated with the degree of exhaustion, as indicated by the Borg scale (during breaking and flight phase). It can be summarized that running-induced fatigue increases the step-to-step variability in novice runners and affects the control of their CoM.

14.
Front Robot AI ; 9: 858893, 2022.
Article in English | MEDLINE | ID: mdl-35572378

ABSTRACT

Introduction: Many employees report high physical strain from overhead work and resulting musculoskeletal disorders. The consequences of these conditions extend far beyond everyday working life and can severely limit the quality of life of those affected. One solution to this problem may be the use of upper-limb exoskeletons, which are supposed to relieve the shoulder joint in particular. The aim of this literature review was to provide an overview of the use and efficacy of exoskeletons for upper extremities in the working environment. Methods: A literature review was conducted using the PICO scheme and the PRISMA statement. To this end, a systematic search was performed in the PubMed, Web of Science and Scopus databases in May 2020 and updated in February 2022. The obtained studies were screened using previously defined inclusion and exclusion criteria and assessed for quality. Pertinent data were then extracted from the publications and analyzed with regard to type of exoskeleton used as well as efficacy of exoskeleton use. Results: 35 suitable studies were included in the review. 18 different exoskeletons were examined. The majority of the exoskeletons only supported the shoulder joint and were used to assist individuals working at or above shoulder level. The main focus of the studies was the reduction of muscle activity in the shoulder area. Indeed, 16 studies showed a reduced activity in the deltoid and trapezius muscles after exoskeleton use. Kinematically, a deviation of the movement behavior could be determined in some models. In addition, study participants reported perceived reduction in exertion and discomfort. Discussion: Exoskeletons for upper extremities may generate significant relief for the intended tasks, but the effects in the field (i.e., working environment) are less pronounced than in the laboratory setting. This may be due to the fact that not only overhead tasks but also secondary tasks have to be performed in the field. In addition, currently available exoskeletons do not seem to be suitable for all overhead workplaces and should always be assessed in the human-workplace context. Further studies in various settings are required that should also include more females and older people.

15.
Front Hum Neurosci ; 16: 816197, 2022.
Article in English | MEDLINE | ID: mdl-35601906

ABSTRACT

The contextual-interference effect is a frequently examined phenomenon in motor skill learning but has not been extensively investigated in motor adaptation. Here, we first tested experimentally if the contextual-interference effect is detectable in force field adaptation regarding retention and spatial transfer, and then fitted state-space models to the data to relate the findings to the "forgetting-and-reconstruction hypothesis". Thirty-two participants were divided into two groups with either a random or a blocked practice schedule. They practiced reaching to four targets and were tested 10 min and 24 h afterward for motor retention and spatial transfer on an interpolation and an extrapolation target, and on targets which were shifted 10 cm away. The adaptation progress was participant-specifically fitted with 4-slow-1-fast state-space models accounting for generalization and set breaks. The blocked group adapted faster (p = 0.007) but did not reach a better adaptation at practice end. We found better retention (10 min), interpolation transfer (10 min), and transfer to shifted targets (10 min and 24 h) for the random group (each p < 0.05). However, no differences were found for retention or for the interpolation target after 24 h. Neither group showed transfer to the extrapolation target. The extended state-space model could replicate the behavioral results with some exceptions. The study shows that the contextual-interference effect is partially detectable in practice, short-term retention, and spatial transfer in force field adaptation; and that state-space models provide explanatory descriptions for the contextual-interference effect in force field adaptation.

16.
PLoS One ; 17(4): e0265550, 2022.
Article in English | MEDLINE | ID: mdl-35363776

ABSTRACT

Even though running enjoys growing popularity, the effects of fatigue on the running kinematics of novices have rarely been studied. This is surprising, given the risk of running-related injuries when detrimental movement patterns are adopted. Therefore, the goal of the present study was to characterize the effects of fatigue induced by a high-intensity running protocol on spatiotemporal and stiffness parameters as well as on joint kinematics and center of mass (CoM) motion in novice runners. 14 participants performed a standardized treadmill familiarization and ran at 13 km/h until voluntary exhaustion. Kinematics were captured using a 3D motion capture system. Spatiotemporal and stiffness parameters as well as the range of motion (RoM) of the joints and CoM were compared by use of paired t-tests. Time series of the joint angles and CoM motion were analyzed by the statistical parametric mapping method. The results revealed that novice runners did not change spatiotemporal or stiffness parameters, but showed adaptations in joint kinematics, e.g. decreased dorsiflexion and increased pronation in the ankle joint during the swing phase. The findings of this study underline the importance of strengthening the ankle joint to prevent excessive pronation and increase its stability in novice runners.


Subject(s)
Ankle Joint , Leg , Biomechanical Phenomena , Humans , Pronation , Range of Motion, Articular
17.
Front Hum Neurosci ; 16: 868828, 2022.
Article in English | MEDLINE | ID: mdl-35399352

ABSTRACT

Multiple sensory signals from visual, somatosensory and vestibular systems are used for human postural control. To maintain postural stability, the central nervous system keeps the center of mass (CoM) within the base of support. The influence of the stomatognathic motor system on postural control has been established under static conditions, but it has not yet been investigated during dynamic steady-state balance. The purpose of the study was to investigate the effects of controlled stomatognathic motor activity on the control and stability of the CoM during dynamic steady-state balance. A total of 48 physically active and healthy adults were assigned to three groups with different stomatognathic motor conditions: jaw clenching, tongue pressing and habitual stomatognathic behavior. Dynamic steady-state balance was assessed using an oscillating platform and the kinematic data were collected with a 3D motion capturing system. The path length (PL) of the 3D CoM trajectory was used for quantifying CoM sway. Temporal dynamics of the CoM movement was assessed with a detrended fluctuation analysis (DFA). An uncontrolled manifold (UCM) analysis was applied to assess the stability and control of the CoM with a subject-specific anthropometric 3D model. The statistical analysis revealed that the groups did not differ significantly in PL, DFA scaling exponents or UCM parameters. The results indicated that deliberate jaw clenching or tongue pressing did not seem to affect the sway, control or stability of the CoM on an oscillating platform significantly. Because of the task-specificity of balance, further research investigating the effects of stomatognathic motor activities on dynamic steady-state balance with different movement tasks are needed. Additionally, further analysis by use of muscle synergies or co-contractions may reveal effects on the level of muscles, which were not visible on the level of kinematics. This study can contribute to the understanding of postural control mechanisms, particularly in relation to stomatognathic motor activities and under dynamic conditions.

19.
J Oral Rehabil ; 49(3): 327-336, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34811784

ABSTRACT

BACKGROUND: The influence of the stomatognatic system on human posture control has been investigated under static conditions, but the effects on dynamic balance have not yet been considered. OBJECTIVE: Investigating the influence of different functional stomatognatic activities (jaw clenching (JAW), tongue pressing (TON) and habitual jaw position (HAB)) on postural performance during a dynamic reactive balance task. METHODS: Forty-eight physically active and healthy adults were assigned to three groups differing in oral-motor tasks (JAW, TON or HAB). Dynamic reactive balance was assessed by an oscillating platform which was externally perturbed in four directions. Performance was quantified by means of Lehr's damping ratio. Mean speeds of the selected anatomical regions (head, trunk, pelvis, knee and foot) were analysed to determine significant performance differences. RESULTS: The groups differed significantly in balance performance in direction F (i.e., forwards acceleration of the platform). Post hoc tests revealed that the JAW group had significantly better performance compared with both the HAB and TON groups. Better performance was associated with a decreased mean speed of the analysed anatomical regions. CONCLUSION: JAW can improve dynamic reactive balance but the occurrence of positive effects seems to be task-specific and not general. TON seems not to have any observable effects on dynamic reactive balance performance, at least when evaluating it with an oscillating platform. JAW might be a valuable strategy which could possibly reduce the risk of falls in elderly people; however, further investigations are still needed.


Subject(s)
Masticatory Muscles , Postural Balance , Adult , Aged , Humans , Masseter Muscle
20.
BMC Cancer ; 21(1): 917, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34388977

ABSTRACT

BACKGROUND: Lung cancer is the most common oncological cause of death in the Western world. Early diagnosis is critical for successful treatment. However, no effective screening methods exist. A promising approach could be the use of volatile organic compounds as diagnostic biomarkers. To date there are several studies, in which dogs were trained to discriminate cancer samples from controls. In this study we evaluated the abilities of specifically trained dogs to distinguish samples derived from lung cancer patients of various tumor stages from matched healthy controls. METHODS: This single center, double-blind clinical trial was approved by the local ethics committee, project no FF20/2016. The dog was conditioned with urine and breath samples of 36 cancer patients and 150 controls; afterwards, further 246 patients were included: 41 lung cancer patients comprising all stages and 205 healthy controls. From each patient two breath and urine samples were collected and shock frozen. Only samples from new subjects were presented to the dog during study phase randomized, double-blinded. This resulted in a specific conditioned reaction pointing to the cancer sample. RESULTS: Using a combination of urine and breath samples, the dog correctly predicted 40 out of 41 cancer samples, corresponding to an overall detection rate of cancer samples of 97.6% (95% CI [87.1, 99.9%]). Using urine samples only the dog achieved a detection rate of 87.8% (95% CI [73.8, 95.9%]). With breath samples, the dog correctly identified cancer in 32 of 41 samples, resulting in a detection rate of 78% (95% CI [62.4, 89.4%]). CONCLUSIONS: It is known from current literature that breath and urine samples carry VOCs pointing to cancer growth. We conclude that olfactory detection of lung cancer by specifically trained dogs is highly suggestive to be a simple and non-invasive tool to detect lung cancer. To translate this approach into practice further target compounds need to be identified.


Subject(s)
Biomarkers , Exhalation , Lung Neoplasms , Olfactory Perception , Volatile Organic Compounds , Working Dogs , Animals , Dogs , Humans , Bronchoscopes , Early Detection of Cancer , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Respiratory Function Tests , Sensitivity and Specificity , Tomography, X-Ray Computed , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/urine , Working Dogs/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...